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Executive Summary
The problem statement: Virtualizationis a foundational element

of cloud computing that encapsulates various services that can meet the user
requirement in a cloud computing environment. This technology allows
service providers to consolidate the servers to one physical machine as
Virtual Machines (VMs) reducing the amount of the hardware in use. Cloud
computing paradigm leverages virtualization and provides on-demand
availability of computer system resources, especially high performance
computational (HPC) and high-speed mass storage resources to meet the
growing demand for computations and a large volume of data.

In addition to the air conditioning and cooling equipment, such
computer system resources are the major source of the power consumption
in cloud infrastructures. The power consumption of data centers (DC) is
increasing due to several aspects, such as increasing the data volume to deal
with or the need for more HPC facilities, which in its term leads to serious
environmental issues (including e-waste and CO2 emission). The energy
consumption of DCs is already going upwards to 8-10% of global
consumption and the total global footprint is 2% of global CO2 emissions.
Thus, reducing energy consumption will play an important role to decrease
the total energy consumption of these centers.

Resource management is crucial for every DC provider that focuses on the
efficient sharing of cloud resources among multiple users. The resource
optimization is one of the most efficient ways to minimize the energy
consumption of DCs. The RM aims to provide the same service with less
resources and with the same quality (without Service Level Agreement (SLA)
violation). The processor (CPU), Memory (RAM), storage (disk space) and
network are the basic resources of DCs.

In the past a few years, the resource optimization challenges for cloud
environment received great attention from the researchers. However, it is

extremely complex to target all types of resources at once. Thus, there are



many works in the field on CPU resource optimization, since it was

considered to be the most expensive and main resource in DCs. However,

the situation has changed during the years. Over last years, it has been

viewed the emergence of new applications with growing memory demands,

while hardware platforms' evolution continued to offer more CPU capacity

growth than memory, referred to as the memory capacity wall.

The Aim and objectives: This dissertation aims to develop a memory

management and optimization environment for virualized DCs implemented

in Unix like Operating System (OS) kernels. The studies follow the following

objectives:

To develop an accurate and non-intrusive working set estimation
method focused toward track the working set size of a VM.

To develop a single-node memory management system using above
described working set estimation method.

To develop multi-node memory management and optimization
environment for virtualized DCs.

To develop and implement software solutions for the above described

objectives.

Methods: The following methods have been used to explore the memory

resource management and optimization in datacenters:

Linux kernel module development aiming to provide customized
memory management aware kernels.

Widely used memory management, migration and consolidation methods
(such as memory ballooning, VM migration, consolidation etc).

Distributed memory sharing mechanisms (remote swapping over RDMA).

Well known benchmarking suits for data intensive and HPC workloads.

Research Contributions:

An accurate and non-intrusive working set estimation method has been

suggested to extend the kernel of a hypervisor and a Unix like OS.



e A single-node memory evaluation and distribution system has been
developed allowing to reclaim unused memory from unsaturated VMs
and land it to saturating VMs.

o A distributed memory management system has been developed relying
on remote swapping technologies for DC-wide memory mutualization.

Practical Significance: All the developed methods and environments have
been implemented in the cloud infrastructures provided by the IRIT and
[IAP. The efficiency of the suggested solutions have been confirmed by
several scientific applications and benchmarking suits.

Presentation of Results:

e Association for Computing Machinery’s Special Interest Group on
Measurement and Evaluation, which specializes in the field of
performance analysis, measurement, and modeling of computer
systems (ACM SIGMENTRICS) June 18-22, Irvine, CA, USA, 2018

o |Institute of Electrical and Electronics Engineers (/EEE) Ivannikov
memorial workshop (IVEM), 3 - 4 MAY, 2018 Yerevan, Armenia, 2018

e Conférence d’informatique en Parallélisme, Architecture et Systéme
(COMPASS), 3-6 July Toulouse, France, 2018

The Publications: The scientific results of the PhD have been published in

4 scientific articles which are highlighted at the end of this abstract.

Thesis Structure: The manuscript consists of an introduction, 3 chapters

and a conclusion. The manuscript covers 104 pages including including 94

references, 29 charts and 5 tables.

Introduction
The introduction presents the research domain, problem statement, the aim
and objectives as well as the focus of the research.
Besides, the introduction gives background information on the used
technological stack:

¢ Main solutions provided by a Cloud provider:

¢ The technology behind cloud computing, including virtualization.
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e The types of hypervisors, the benefits and drawbacks of each type.
¢ Resource managements that are widely used in virtual environments.
¢ Dynamic and static resource allocation approaches
e Memory management in virtual environment.
The section also represents the following three main steps that are used by
all memory management systems:
¢ Monitoring: The working set of VMs is a challenge for datacenter
providers as it allows to measure the memory need by VMs and the
memory which can be reclaimed. The reclaimed memory can then be
used to satisfy memory needs of other VMs in order to raise the
consolidation ratio.
¢ Reclamation: Most of the modern hypervisors implement memory
reclamation techniques (memory ballooning) to reclaim unused memory
from VMs, thus avoiding resource waste. In such systems, the VM is
equipped with a balloon driver, which can be inflated or deflated (by
the hypervisor/dom0).
¢ Re-Distributing: Memory reclaimed by the hypervisor on one server
can be granted to VM which lack memory on the same server. However,
this reclaimed memory cannot simply be allocated to remote VMs.

Chapter 1: Studies on Working Set Size Estimation Techniques in
Virtualized Environments: Badis This chapter presents a state-of-the-art
survey on working set size estimation techniques and propose Badis, a
system that can estimate a VM’s working set size with high accuracy and no
VM codebase intrusiveness.

Numerous DCs are relying on virtualization, as it provides flexible resource
management means such as VM checkpoint/restart, migration and
consolidation. However, one of the main hindrances to server consolidation
is physical memory. In nowadays cloud, memory is generally statically
allocated to VMs and wasted if not used. Techniques (such as ballooning)

were introduced for dynamically reclaiming memory from VMs, such that
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only the needed memory is provisioned to each VM. However, the challenge
is to precisely monitor the needed memory, i.e., the working set of each VM.
In this context, it has been thoroughly reviewed the main techniques that
were proposed for monitoring the working set of VMs. In this work, the
main  techniques (Geiger, WMware, Excusive cache, Zballond,
Selfabllooning) have been implemented in the Xen hypervisor and it has
been defined different metrics to evaluate their efficiency. Based on the
evaluation results, Badis is proposed, a system which combines several of
the existing solutions, using the right solution at the right time. It has been
also proposed a consolidation extension, which leverages Badis to pack the
VMs based on the working set size and not the booked memory. The
implementation of all techniques, our proposed system, and the used
benchmarks are publicly available to support further research in this
domain.

In summary, the contributions of this work are the following:

e The evaluation metrics haver been defined that allow to characterize
WSS estimation solutions.

e The existing WSS techniques have been evaluated on several types of
benchmarks. Each solution was implemented in the Xen virtualization
system.

e Badis has been proposed, a WSS monitoring and estimation system
which leverages several of the existing solutions in order to provide
high estimation accuracy with no codebase intrusiveness. Badis is also
able to dynamically adjust the VM's allocated memory based on the
WSS estimations.

e A consolidation system extension is proposed which leverages Badis
for a better consolidation ratio. Both the source and the data sets
used for our evaluation are publicly available, so that our experiments

can be reproduced.



The metrics for characterizing WSS estimation techniques are the following:
the intrusiveness (requires the modification of the VM), the activeness (alters
the VM'’s execution flow), the accuracy, the overhead on the VM (noted vm-

over), and the overhead on the hypervisor/domO (noted hyper-over).

e Vm_over: it directly impacts the VM performance. It could be affected
by both the intrusiveness and the activeness.

e accuracy: a wrong estimation leads to either performance degradation
(under-estimation) or resource waste (over-estimation).

e hyper-over: a high overhead could saturate the hypervisor/domO,
which are shared components. This could lead, in turn, to the

degradation of VMs’ performance (e.g. the I/O intensive VMs).
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Figure 1. The ability of researched techniques to follow the actual working set of the
application (part 1)



Fig.1 and Fig. 2 present the results for each workload and each WSS
estimation technique. To facilitate the interpretation of the results, each
curve shows both the original workload (noted W°) and the actual estimated
WSSs (noted Wj), 1 <i< 5 (represents the workload type) and j=s,d
(represents the implementation type - static or dynamic).
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Figure 2. The ability of researched techniques to follow the actual working set of the

application (part 2)

nil

Self-b. | Zballoond | VMware | Geiger | Ezcl. Cache
intrusive ves ves no no no
active no yes ves no ves
addressed all all Smore Sless Sless
situations
Self-b. Zballoond VMware | Geiger Ezel. Cache
accuracy depends high high in Smore | high in Sy high in Sp...
on the app. 210 in Spege zero in Spare | z€10 in Spore
VIT_OVET nil almost nil in Spore almost almost
nil high in Sj.qs nil nil
hyper_over nil nil almost almost not negligible

nil

Table 1 Study synthesis of all WSS estimation techniques according to both
qualitative and quotative metrics
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Table 1 summarizes the characteristics of each technique according to both
qualitative and quantitative criteria. Besides these criteria, the evaluation
results reveal that not all solutions address the issue of WSS estimation in its
entirety. Indeed, a WSS estimation technique must be able to work in the
following two situations:

®  (Smore) the VM is wasting memory,
®  (Skss) the VM is lacking memory.

The VMware technique is only appropriate in (Smore) while Geiger and
Hypervisor exclusive caches are effective in (Siss). Only Zballoond and self-
ballooning cover both (Smore) and (Sess). Our study also shows that each
solution comes with its strengths and weaknesses.

Badis is a system which smartly combines existing techniques in such a way
that both (Smore) and (Siss) are covered with no codebase intrusiveness.
Indeed, it has been determined that even if the VMware and Geiger solutions
have a fairly high performance impact, they have no intrusiveness in the
VM’s codebase. The second observation is that these solutions are
complementary (VMware addresses Smore while Geiger addresses Siess). The
Hypervisor exclusive cache is also a solution that only addresses (Sess) but it
has higher hyper-over. Thereby, a system which can combine VMware and
Geiger satisfies all our requirements.

Self-ballooning Zhalloond Badis

Benchmark and app. VT OVer VIn._over vim.over | hyper_over

avrora 1 1.19 1.26 L8 '

batik 1 109 1.57 1.05
Dacapo eclipse 1 3.67 1 1.68

h2 1 2 1.1G 1.3

jython 1 1.58 1.05 1.15
Cloud suite | Data Analytics 1.29 1.4 1.16 1.2
LinkBench MySQL 1.11 292 1.09 1

Table 2 Evaluation of Badis

Table 2 presents the comparison of badis with existing solutions based on
macro-benchmarks. Badis, a system which combines several of the existing
solutions, using the right solution at the right time. In addition, a
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consolidation extension has been implemented which leverages Badis for an
improved consolidation ratio. The evaluation results reveal a 2x better
consolidation ratio with only 3% additional VM migrations.

Chapter 2: Local Memory Mutualization Based on Badis is set to reclaim
memory from over-provisioned VMs to provide it to under-provisioned VMs.
Three scientific applications, with different memory behaviors, have been
studied to evaluate the effect of a system on the performance of
applications.

Figure 3 illustrates our cooperative memory management system consisting
of three main parts: Working set estimation technique which periodically
calculates the working set size of each VM and updates the values. The
memory manager adjusts the memory size of VMs according to the new
working set values. If a VM is over-provisioned, then unused memory
(according to the working set) is reclaimed and sent to the free memory
pool. In the case of memory shortage of a VM, the memory needs can be
satisfied from the free memory pool. The system guarantees that at least the
VM’s initially allocated memory size is allocated in case of memory shortage
and some extra memory can be reallocated if the free memory pool is not
empty.

Satisfy Memary Needs

Figure 3 CMMS architecture

The system maintains 2 variables for each VM: initial allocation (Memi.i) and
current allocation (Mem..). The VMs are distinguished into two groups:
Servers and Clients. Servers are the VMs that gave memory to the pool
(Memji>Mem,r) and Clients are the VMs that owe memory to the pool
(Meminir<Mem,c).

11
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Figure 4 Memory behavior of VMs

The observations on Figure 4 show that VMI(solving linear algebra problems
with BLASS library) and VM2(running geo-images processing using GRASS
software) are crossing the line of 1GB several times during the running time
of the applications, which is the initially allocated size of the VMs. Thus, in
case of static allocation, these VMs are swapping during these periods.
However, these peaks are supposed to be amortized with dynamic allocation.
Furthermore, It is possible to notice that at some points, the total of the
memory needs is higher than the size of the available memory on the

physical machine. This means that at these points, the amount of memory in

the pool is 0 and the memory management system faces a challenge of fair
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Figure 5 Difference of swap activity in case of static and dynamic allocation
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memory distribution when free resources are not enough. Figure 5
demonstrates that dynamic allocation may significantly reduce the amount of
swapped out memory. The experiments show that by applying dynamic
allocation, the amount of swapped out memory has been reduced by 4.2.

Chapter 3: Memory Mutualization System For Virtualized Computing

Infrastructures

This contribution aims to improve memory management in such
environments. The generally adopted approach is to monitor the working set
of each VM and to reclaim weakly used memory (cold pages) without
degrading the VM performance. Then, the reclaimed memory can be given
to VMs with high memory requirements. However, this can only be done on
a per server basis as reclaimed memory on one server can only be given to
VMs running on that server. Therefore, it is mandatory to relay have to trust
the placement and consolidation systems for gathering on the same server

memory providing VMs and memory consuming VMs.
However, this approach is difficult to implement for two main reasons:

1. Consolidation limitations. Consolidation is known to be a NP hard
problem, especially since it has to simultaneously take into account multiple
resource types whose availability is continuously varying. Therefore, it is a

challenge to colocate VMs so that memory can be mutualized.

2. Infrastructure concerns. VMs’ placement may be constrained by rules
linked with the hardware type or with administration policies (e.g. different
sub-clusters for HPC or BD applications), thus limiting the use of VM

migration and dynamic consolidation.

Therefore, requiring VM colocation for memory mutualization appears to be
a substantial limitation. The principle followed by the suggested contribution

is to make the reclaimed memory accessible remotely.
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It is observed that VMs in HPC clusters are mainly CPU bound and their
memory consumption is quite stable, allowing memory to be reclaimed to
provision the memory reservoir. Most applications in BD clusters are
memory and |0 bound and can significantly benefit from extra memory from

the memory reservoir.

Physical machines act either as a Client (memory consumer) or a Server
(memory provider). A client machine can benefit from remote memory from
server machines. A machine which does not use all of its memory becomes a
server. A machine which requires more memory (than its capacity) becomes
a client. However, every VM is guaranteed to have at least its initially
allocated memory in case of memory shortage. Thus VMs and client

machines can get their memory back in such cases.

The suggested system is composed of two parts: dynamic memory allocation
within one node (local memory mutualization) and remote memory allocation

from server machines (global memory mutualization).
The design of our system relies on two main entities:

e A Local Memory Controller (LMC) is in charge of memory
management within a single node. Every node (client or server) is
running an LMC. The LMC manages a Free Memory Reservoir. This

memory may be used for local or global mutualization.

e A Global Memory Controller (GMC) manages the coordination
between machines (clients and servers). It is connected with all the
LMCs. It implements a Global Memory Reservoir by federating the
distributed free memory reservoirs. It is responsible for remote

memory distribution among clients.
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Fig. 6 shows the performance improvement obtained with the Data Caching
benchmarks with a heavy workload. The baseline is the execution without
memory extension, so that the required swap is managed on disk.
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Figure 7 Performance boot of memory intensive applications armed with our
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Fig. 7 shows the performance improvement for our 3 selected memory
intensive  benchmarks with the different workload sizes, when being
provided memory extension over Infiniband. Naturally, the improvement is
proportional to the memory extension required by the workload. It is
observe that the improvements are significant for all benchmarks.

The implemented platform enables to improve the memory management of
HPC and BD infrastructures via dynamically monitoring the working set of
each VM, aggregating this memory into a distributed memory reservoir, and
making it available to requiring VMs. Microbenchmarks, memory intensive
benchmarks and Big Data benchmarks were used to evaluate our
contribution. The results show that remote memory mutualization can
improve the performance of a standard Spark benchmark by up 17% with an
average performance degradation of 1.5%.

Main Scientific results:

e An accurate and non-intrusive working set estimation method has
been suggested to extend the kernel of a hypervisor and a Unix like
0S. [2]

e A single-node memory evaluation and distribution system has been
developed allowing to reclaim unused memory from unsaturated
VMs and land it to saturating VMs. [3]

e A distributed memory management system has been developed
relying on remote swapping technologies for DC-wide memory

mutualization. [1,4]
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wpnjwyntiph hwdwn, nwd npwnpnyejwu Yaunpnund £ gunuynd wdwwjhu
nbunipuubiph - wpryniwwybivn - hwdoguwagnpdnwp  pwqdwlh  ogunynnubiph
opowunud: (Heunipuubiph owwhdwjwgnudp SY-ubiph Lubpghwjh uwwndwu
ujwqgbtigdwt wdbuwwpryntbwybinn Gnwuwlyubphg dayu £: MHY-h bywnwyu £
wwwhnybi| unyu Swnwjnyeintup phs nbunipuubipny, pwyg dhlunyu npwyny
(wnwug Swnwjnypjwu Jwlwpnwyh hwdwéwjuwgph (SLA)  fuwfundw):
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Mpngbunpp (CPU), owbtipwwhy  hponnnigyniup (RAM),  hhduwlwu
hhonnnieniup (uwywnwyh rwpnnniuwynienit) b guugp SY-h hhduwywu
nbiuntpuubipu Gu:

Uugws dh pwuh wwphubph pupwgpnd, wdwwiht  Jdhowduwjpnid
nbunipuutiph owwhdwjwgdwu dwpwwhpwdbpubipp d6d npwnpnigwu Gu
wpdwuwgb) htitnwgnnnnubiph Ynndhg: Wunwdbuwjuhy, swihwqwug pwnpn
E ehpwhuwynpt) dhwuqwdhg pninp nbunipuutipp: Wuwhuny, Yuwwnpyb) Gu
pwgntd htitnwgnunnieniuubp ypngbiunpubiph nbuntputubph owwhdwwgdwu
ninpunnwd, pwuh np wju hwdwpynud b wdbuwpwuy hhduwlwu nGunipup S4-
nul:  Swphubph pupwgpnd, uwlwju, hpwypbwyp thnfudl £ Uugwd
wmwnhubiph pupwgpnd hhonnnigjwlu wéh wwhwugubtiph htwn dtlwnbin dkup
wbul  Gup  unp  hwybwoéubph  wnwowgdwlu  wwhwlg, dhusnbin
uwppwynpnudubiph wwwdnpdh  EYynpnighwt owpniuwyt] £ wnweowpyby
wybih 2wwn wpngbunpubiph, pwu hphonnnigjwt huwpwynpnieniutn, npp
nhuynid £ npwtiu hhannnigjwt huwpwynpniyejw wwun:

Lwwwuwyp b unphpubpp. Uju wnblwlunungjwt bwywnwlu § dowlyb)
hhannniejwu Ywnwywnpdwu L owwnhdwjwgdwu dhowywjp
yhpunnwhqugywsd SY-ubiph hwdwp, npnup ogunwgnpdynwd Gu Unix ubpunp
owtipwghnu hwdwlwpgh (0<) dhonyubiph Ynndhg: Lbwnwgnunnyeniutbinp
wnwownnbi| Gu htinlyw)| fuunhpubpp.

o Uswybky 6ogphin L hwdwlwpgh wofuwwmwupp  sdwupwpbinunn
wluwwnwupwjht pwguinyejwt quwhwwndw dbpnn, npp bwjuwwnbugwsd k
YU-h wotuwwnmwupwiht pwquinijwi hbunlbiniu:

e Upwlyb) dbYy hwugnygh hhonnngjwtu  Yunwywpdwt  hwdwlwng,
oginwagnpdtiiny  ybpp  Ujwpwgpjws  wfuwnwlpwiht - pwqunipjw
guwhwwndwu dbnnp:

e Uowlb] pwgdwhwugnyg hppnnnigjwt Yuwnwjwpdwt owunhdwwgdwu
dhowyw)n yhpuntwjugywsd SY-ubiph hwdwp:

e Uowlb L ppwlwuwgub) dpwgpwihtu (ndnwdubp ybpp uwpwgpywsd
Uywwnwyubphtu hwutbnt hwdwp:

Ubpnnubkp.

Lhonnnupjwu nbuntpupubpp Ywnwljwpdwt  punuwiudwu b wndyuiubphp
ytuwnpnuubpph  owywphdwjwgdwtu  hwdwp  oguwgnpdytii Gu  hbnbyw|
dtipnnubnp.
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e Linux dhonyh dnnnih dpwgpwiht dowynd, npp bwwwnwlu £ wwwhnyby
hhonnnipniuutiph Ywnwjwpdwu hwpdwpbgwd hwdwywngbip

e Lwjunptu  Yppwnynn hponnnipjuu jwnwwpdwu, dhgpughnu U
Ynuunhnwghnu  (huswhuphp Gu  hppnnnugywt  Ybpwpwofudwu, YU
dhgpwghwt, YU Ynuunhnwghw W wyju)

e Pwotujwd  hponnnipjwt  wwpwddwu  dbfuwuhgqdubp  (RDMA-h
wibfuuninghwubin)

e Cunniujwd pbusdwpphug gnpdhpubip twjuwwbujwd HPC L wnyjwjutiph
htitn hunbuuhy wofuwwnwuph Swupwpbinujwéniejwu hwdwnp

Lbwnwgnunniejwt wpryntupntd.

o Unwownlyty £ G2gphin b hwdwlwpgh wofuwwmwupp sdwupwpbinunn
wluwwnwupwjht pwadniejwi guwhwwndwt dbpnn npwtiu hypervisor-h W
Unix utipunh O< dhonwyh hwybiywsé: [2]

e Uowlyty £ hwugnygh hhonnnigjwt  quwhwwndwu b Ywnwywpdwu
hwdwlwng, npp peny. £ wwhu  hbin  Juuskp  sogunwugnpdywd
hhonnnipniup phpptinujwséd YU-ubiphg U wpwdwnpb gbppbnujwsd YU-
ubiphu: [3]

e Uowlyb| b pwqdwhwugnyg hhonnnigjwt Yuwnwywpdwu dhowywip npp
pny, £ wwhu Yuwuwwpb  hhonnnpjutu JGpwpwstund - SY-ubiph
dwlwpnwyny: [1,4]

PE3IOME
KouapsaH Apam CeiipaHoBuy
YNPABJIEHUE NAMATbIO B BUPTYAJIbHbIX CUCTEMAX

[NocTtaHoBKa I'IpO6J'IeMbII BUPTyann3auyuna - 3T0 OCHOBOI'IOJ'IaFaI-OLLI,VIﬁ

3NeMeHT obnayHbIX BbIYUCNEHUI, KOTOpaA BKNIOYaeT B cebA pasnuuHble
CepBUCbl, KOTOpble MOrYT YLOBNETBOPUTH TpeboBaHUA Monb3oBaTeneli B
cpene o6nayHbIX BbIYUCNEHMIA. DTa TEXHONOTUA MO3BONAET MOCTaBLUMKaM
ycnyr obbeguHUTb cepBepbl B OOUH (PUM3MYECKMIA y3en B BUAE BUPTYalbHbIX
MaLLMH, YMeHbLUAA KOMMYECTBO Mcmonb3yemoro obopypnoBaHuA. [Napagurma
0bnayHbIX BbIYUCNEHWIA UCMONb3yeT BUpTyanu3auuio W  obecrneynBaeT
LOCTYMHOCTb PecypcoB KOMMbHOTEPHOI cuCTeMbl MO TpeboBaHWIO, 0cObeHHO

BbICOKOMPOU3BOANUTENbHBIX BbluncanTenbHbix (BINB) 1 BbICOKOCKOPOCTHBIX
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pecypcoB 60MbLLOI eMKOCTU, ANA yAOBNETBOPEHNA pacTyLux noTpebHocTel
B BblYMCNEHNAX 1 60NbLLIOro obbeMa AaHHbIX.

B mononHeHne k obopynoBaHMIO AR KOHAMULMOHUPOBAHWUA W OXNaMAeHNs
BO3yXa, TaKkuMe pecypCbl KOMMbIOTEPHOW CUCTEMbl ABMAIOTCA OCHOBHbIM
WCTOYHMKOM  3HepronoTpebnenns B 0bnayHbIX  MHAPACTPYKTypax.
Motpebnenne anHeprun ueHTpamu obpaboTkn panHbix (LLOJ) ysennumsaetca
M3-3a HECKONbKUX acrekToB, TaKWX Kak yBennueHue obbema AaHHbIX AfA
obpabotkm unan  notpebHocTb B Oonbluem  KonuyectBe — OObEKTOB
BbICOKOMPOU3BOAUTENbHbIX  BbIYUCNEHUIA, KOTOpblE B CBOKO  OuYepefb
NPMBOLAT K CEPbE3HbIM IKONOrMYECKUM npobnemam (BKIKOUaA 3NEKTPOHHbIE
otxogpl U Bbibpockl CO?%). DHepronotpebnerune LLOLL yxe Bo3pactaer fo 8-
10% ot muposoro notpebnenus, a obwimii rnobanbHblii cnep, coctasnaet 2%
oT  rnobanbHbix  BblbpocoB  CO%.  Takum  o6pasom,  CHUNKEHUE
aHepronotpebneHna 6yneT wrpaTb BaMHylO poOfib B CHUMEHUU obLLero
3HepronoTpebneHna 3Tux LLeHTPOB.

Ynpaenenve pecypcamu (YP) umeeT peluatoLee 3HaveHue AA Kamgoro
noctaBwmka LUOJ, Kotopbii  cocpepotoyeH Ha  3PPEKTUBHOM
pacnpegeneHun obnayHbIx pecypcoB MeAy HECKONbKWMU MONb30BaTeNAMM.
OnTuMu3auma pecypcoB ABNAETCA OAHUM W3 Haubonee 3PEKTUBHbIX
crnocobos MUHMMUM3auun aHepronoTpebnenuna LLOJl. Ynpaenernue pecypcamu
CTPEMUTCA NPEefOCTaBUTb Ty e YCNyry C MEeHbLUMMU pecypcamn u C TeEM e
KayectBoM (6e3 HapylieHna CornaiieHus o6 yposHe obcnymusanua (SLA)).
lMpoueccop, onepaTuBHaA NamaATb, NamMATb (LMCKOBOE MPOCTPAHCTBO) U CETb
ABNAIOTCA OCHOBHbIMM Pecypcamu LieHTpa 06paboTkM JaHHbIX.

B nocnepHne HeckonbKo netT npobnemam onTUMM3aLMK pecypcoB obnayHoi
cpefpl vccnepfoBaTenaMu yaenanocb 6Gonbliuoe BHUMaHWE. Tem He MeHee,
YpesBblYaliHO CMOMHO HaLLeNMBaTbLCA Ha BCE TUMbl PECYPCOB OAHOBPEMEHHO.
Moatomy, B 37Ol ObnacTn BegeTca MHOro paboT Mo ONTUMMU3aLLMK PEeCypCcoB
npoueccopa, NMOCKONbKY OH CHUTAETCA CambIM JOPOTrMM U OCHOBHbIM PECYpPCOM
B LIOJ. OpHako cuTyaumsa n3meHunacb 3a 3TM rogpl. 3a NocnefHue rogpl Mbl
CTaiu  CBUAETENAMW MOABNEHMA HOBbIX MPUIOKEHWI A C  pacTyLLMMu
TpeboBaHUAMM K MaMATW, B TO BPEMA Kak 3BOMIOLMA annapaTHbIX nnatopm
npogonana npegnarato 601bLLNIT NPUPOCT MPOLLECCOPHOI MOLLLHOCTU, Yem
namATK, Ha3blBaeMOii CTEHOIN EMKOCTU NamMATH.
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Llenb n 3apaum: Llenbto gaHHoi aucceptaumum aenaetca paspaboTka cpefbl

ynpaBneHna W ONTUMM3ALMKM NamMATM A  BUPTYaIU3MPOBaHHbIX LEHTPOB
00paboTKM [aHHbIX, peann3oBaHHbIX Kak Afpa onepauuoHHoit cuctembl (OC)
cemeiica Unix. MccnepoBaHna npecnepytoT cnepytoLLme Lenu:

PaspaboTtatb TOYHbIW U HEMHTPY3WBHbI1 METO, OLLeHKK pabouero Habopa,
OpPUEHTMPOBAHHOIO Ha OTCNeMuBaHWe pa3vepa pabouyero Habopa
BUPTYa/IbHOW MaLLVHbI.

Paspabotatb ~ OgHOY3MOBYyHO ~ cucTeMy  YyrpaBneHWA  MamATblo  C
CrMoNb30BaHNEM BbILLIEONMCAHHOIO METOAA OLLeHKM pabouero Habopa.
Paspabotatb MHOrOy3noByto cpeny YnpaBleHuAs U ONTUMU3aLUKM MamATH
ana LoA.

PaspaboTtatb ¥ BHELPUTH MPOrpaMMHbIE PeLleHUA AA BbILIEONUCAHHbIX
Luenei.

MeTopabi:

,D,J'IFI pacwmpeHna ynpasneHna pecypcamun namATM “U uUxX ontumMmsalmn B
LLEHTpax O6pa6OTKVI AaHHbIX 6bINN UCMONb30BaHbI cnepgyrouine MeTobl:

Paspabotka mopyneii Agpa Linux ¢ uenblo  npepocTaBneHuA
HacTpavBaemblX AAep C NOAAEPHKKON ypaBneHUa NaMATbHO.

Lnpoko ucnonb3yemble MeTOfbl YMNpaBNeHUA NaMATbIO, MUrpauun w
KOHCONMMpauun (Takue Kak pasgyBaHue MamMATH, MUTpaLMA BUPTyanbHbIX
MaLLMH, KOHCONMMAauMA u T. 4.).

PacnpepeneHHble MexaHU3Mbl COBMECTHOTO MCMONb30BaHWA MaMATH
(yoaneHnHas 3ameHa yepe3s RDMA).

XOpoLIO M3BECTHblE 3TaNOHHble TECTbl [AJIA WHTEHCUBHOW paboTbl C
LaHHbIMK 1 pabounx Harpy3ok BI1B.

B pesynbTate uccnegosaHmii:

MpepnoxeH TO4HbIA U He neperpyatowinii paboTy cucTeMbl MeTOR,
OLeHKN paboyero Habopa Kak NpUNOMEHWE [AA pacLUMpeHus Agpa
runepemsopa u agpa onepaumorHoit cuctembl (OC) cemeiica Unix. [2]
bbina paspaboraHa cucTeMa OLEHKM U ynpaBneHWA  MNamATbio
BUPTYyanbHOW MallKHbI, NO3BONAIOLLAA BOCCTAHaBUTb HEMCMONb30BaHHYHO
NnamMATb  HE3arpyMeHHbIX W HanpaBAATb €€ Ha MNeperpymeHHble
BUPTYya/bHble MalnHbI. [3]

bbina paspabotaHa MHoroysnoeas cpefa ynpaBneHUA MamATblO,
No3BONAIOLLAA NPOBECTU MepepacnpefeneHne namaTn no BCEM LieHTpam
obpabotkm paHHbix (LO /). [1,4]

/g’,_.
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