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CHARACTERIZATION OF THE THESIS

The Actuality of the Problem

The theory of finite fields is a branch of modern algebra that the origins of finite fields
are from the 17th and 18th centuries. The theory of finite fields as we know it today
was constructed at the end of the 18th century and during the 18th century. The next
big step in the construction of finite fields was provided by Richard Dedekind on

1857. He characterized the finite fields of order p™ as residue class rings By [x]/f,

where f is an irreducible polynomial of degree n over F,. Also he introduced the

Mobius inversion formula in finite fields to study the number of irreducible
polynomials of certain degree. Finally, Eliakim H. Moore in 1893 proved that finite
fields must have p™ elements, where p is a prime. By the end of the 19th century all
the structure of finite fields was known. Dickson's book (1901) already has all the
important elements of this structure. This thesis deals with the explicit methods for
finding irreducible polynomials and N-polynomials over finite fields that are important
problems in finite fields.

For a prime power g and an integer n > 1, let F, be a finite field with g elements, and
Fqn be its extension of degreen. Extensions of finite fields are important in
implementing cryptosystems and error correcting codes. One way of constructing
extensions of finite fields is via an irreducible polynomial over the ground field with
degree equal to the degree of the extension. Therefore, finding irreducible polynomials
and testing the irreducibility of polynomials are fundamental problems in finite fields.
There are two methods for constructing irreducible polynomials over finite fields. The
first method is testing method that is based on this theorem.

Theorem 1. For every finite field F, and everyn € N, the product of all monic
irreducible polynomials whose degree divides n is equal toxd" — x.

The well-known testing algorithm are due to Ben-Or (1981) and Rabin (1980). The
references for these works can be found in von zur Gathen and Panario (2001).

The second method is polynomial composition method that allows constructions of
irreducible polynomials of higher degree from given irreducible polynomials over
finite fields. This method has been studied by Varshamov, Cohen, Kyuregyan and
others.

Another problem that is important for us in this thesis is finding normal element
in Fgn, on the other hand an N-polynomial overF,. An element a € F;n is called
normal if



{a,af, e a? ! }

is a basis of Fn over F. In this case, the basis is called a normal basis. For any prime
power g and positive integern, there is a normal basis for F,» over F, (Eisenstein
(1850), Schonemann (1850) and Hensel (1888)). Also the number of normal elements
in Fqn over F;, was determined by (Ore 1934). To construct a normal element inF g,
one simple method is to draw an element at random uniformly fromF n, test if it is
normal, and repeat until a normal element is obtained (Hensel 1888, von zur Gathen &
Giesbrecht 1990). By polynomial composition method in an explicit method way also
we can find N-polynomials over finite fields. How to methodologically generate
higher degree or efficient normal bases in extension field has been studied for a long
time. It is an important and theoretically interesting problem for researchers because,
different from polynomial basis, every set of conjugate elements does not form a
normal basis. Moreover, some cryptographic schemes efficiently use normal basis by
which the calculation costs of some cryptographic operations are substantially
reduced. In a normal basis representation, squaring can be performed simply by a
cycle shift of the coordinates of an element and, hence, in hardware, it is almost free of
cost. Such a cost advantage often makes the normal basis a preferred choice of
representation. The first time Massey and Omura proposed a normal basis
multiplication scheme which can be implemented in bit-parallel fashion using n
identical logic blocks whose inputs are cyclically shifted from one another.

The Obijective and the Problems of the Thesis

The main aims of the present investigation are:

1. Finding new recurrent methods for constructing families of irreducible polynomials
and N-polynomials over finite fields

2. Factorization of some composite polynomials and finding their irreducible factors,
3. Compute of complexity some N-polynomials over finite fields.

Objects of Investigations

In this thesis, some recurrent methods for constructing families of irreducible
polynomials and N-polynomials over finite fields are studied.

Methods of Investigations

In the work, we apply methods of finite fields theory, linear algebra, number theory
and programming by using Mat lab software.



The Practical and Theoretical Significance of the Results

The results of the thesis can be used in different applications of coding theory and
cryptography.

Publications

The results of the thesis are presented in 7 scientific articles; the list of them is listed at
the end of the text.

The Structure and Volume of the Work

The dissertation consists of Introduction, three Chapters, Conclusion and some
programs in Appendix A for computing complexity of N-polynomials and
factorization some polynomial compositions. The list of references includes 121
entries. The text of the thesis is expounded on 100 pages.

Brief Contents of the Work

In Introduction, the necessary definitions of Finite Fields, e.g. irreducible polynomials,
N-polynomials, trace and norm function, testing and explicit methods also in section of
outline of thesis the aims and the problems of the dissertation are formulated. In
Chapter 2 as main part of this thesis we introduce some constructions of irreducible
polynomials and N-polynomials over finite fields. In addition by using some
transformations we reach to this aim. We mention summary of results obtained in this
chapter. In Part 2.1, we introduce Q-transformation. Varshamov proved that this
transformation can be used to produce an infinite sequence of irreducible polynomials
over F,. Kyuregyan suggested a more general construction over F,s. In this part we
show that this transformation can construct families of irreducible polynomials
over Fgs. Our result is stated as follows:

Theorem 2. Let F;(x) be an irreducible polynomial of degree n over F3s, and n is
evenwhen g = 3 (mod 4) . Then

Fi(x) = x"zk_le(x +6%x7Y), k=1,
is an irreducible polynomial of degree n2* over Fs if and only if
9r, (62) = (=1)"F,(=8)F,(8),
be non-square in F3s.

We present the proof of the theorem in Section 2.1 of Chapter 2. Also we show this
transformation can construct families of N-polynomials over F3s as follows:



Theorem 3. Let g = 3% where s is even number (g = 1 (mod 4)) and F;(x) = x? +
bx + 62 a quadratic polynomial over Fs where b,§ are non-zero and b? — 52 isa
non-square in F3s. Define F,.(x), k = 2 recursively by

F(x) = x'%1F,_ (x + 6%x7Y), k> 1.

Then the sequence F,(x),k = 1 is a trace-compatible sequence of N-polynomials of
degree t, = 2K over F5s. Further if a, is a zero of Fi(x) then a, is a completely
normal element of F ok OVer Fys fork > 2.

We present the proof of the theorem in Section 2.1 of Chapter 2.

Theorem 4. Let g = 35 where s is odd number (¢ = 3 (mod 4)) and F;(x) = x% +
bx + & is a quadratic polynomial over Fss where b is non-zero and b% — &, are non-
square in Fgs. Define F.(x), k = 2 , recursively by

F(x) = xt%1F,_;(x + 6x71), k> 1.

Then the sequence F,(x),k = 1 is a trace-compatible sequence of N-polynomials of
degree t, = 2% over Fys. Further if a; is a zero of F,(x) then a; is a completely
normal element of F ok OVer Fss fork = 2.

We present the proof of the theorem in Section 2.1 of Chapter 2. In Part 2.2 we use
. p_ . .
the transformation — ip—:g‘) . E, fields are proposed for cryptographic purposes
- 1
where p is relatively small. In particular, some authors describe an implementation of
ECDSA over fields of characteristic 3 and 7. Some researchers describe a method to
implement elliptic curve cryptosystems over fields of small odd characteristic.

By using this transformation we obtain the following theorem:

Theorem 5. Let P(x) = ¥, c;x!, with P(x) # x be an irreducible polynomial of
degree n over F,, and let its reciprocal P*(x) be an N-polynomial over F,. Set

F(x) = (xP —x +6)"P (x”_—x)
B xP —x+6/'

Where § € F*,. Then F*(x) isan N-polynomial of degree np over F, if and only if

1 P(1)
(n+ 2—0) Train(® gy = n8) 0.

We present the proof of the theorem in Section 2.2 of Chapter 2.

6



Based on above theorem a recurrent method for constructing families of N-
polynomials of degree np* over F, is stated.

Theorem 6. Let P(x) = ¥, c;x! be an irreducible polynomial of degree n over F,
and P*(x) be an N-polynomial and § € F*,,. Define

Fo(x) = P(x)

n xP —x
Fk(X) = (Xp —-x+ 6) ka—l (m), k> 1,

Then F*(x) is an N-polynomial of degree np* over F, ifand only if

Trypy (n+ )Trq|p(6PE1; ns) # 0.

We present the proof of the theorem in Section 2.2 of Chapter 2.

In Part 2.3 by using Dickson's Theorem we construct families of irreducible
polynomials of degree 4n¥, (k =1, 2,...) over a finite field of odd characteristics.

In the first we states Dickson's Theorem as follows.

Theorem 7 (Dickson). Let f(x) =x*+ax®+bx*+cx+d €F, (q=p°odd),
wherec = %ab - §a3, then f(x) is irreducible over F; if and only if

1 1 5
—b——-a®)?—-d,and —a* — a®’b + 16d
2 8 16

are non-square inf,.

Based on Dickson's Theorem, we discuss this problem. Let P(x) be an irreducible
polynomial of degree n over F,, then it can be represented in F,n asP(x) =

nZi(x —ad"), for a € Fyn . Substituting x* + ax® + bx? + cx +d for x we
obtain the polynomial F(x) as
n—-1
F(x)=P(x*+ax®>+bx*+cx+d) = n(x4+ax3+bx2+cx+d —a®.
u=0
Suppose h(x) = x* + ax® + bx? + cx + d — «, then by Cohen's Theorem F(x), is
irreducible polynomial of degree 4n over F, if and only if h(x) € Fyn[x] be
irreducible. But by Dickson's Theorem, h(x) where ¢ = %ab —%a:“ is irreducible if

7



and only if X= (%b —%az)2 —d-—a)=—(T;—a) andY = %a“ —a’b +
16(d — a) = 16(T, — a),
Where T, = d — (—b —= 2)2 and T, = —a4 — a?b + d, be non-square in

et

a
Fqn. We know X € Fn, is non-square if and only if X" 2~ = —1. But we have

n-1
0 - ) = (- - ) T = [ i - )
u=0
= (-D"P)'T,

S0 X € Fgn, is non-square if and only if ((=1)"P(T})) € F, . be non-square. Like
above relations it is clear that Y € F4n, is non-square if and only if P(T;) € Fq , be
non-square. First deduce the following theorem.

Theorem 8. Let P(x) be an irreducible polynomial of degree n over F, and ¢ = %ab -
§a3. Then F(x) = P(x* + ax3 + bx? + cx + d ) is irreducible of degree4n, if and

only if (=1)"P(T;), and P(T3), be non-square in F,, where
T,=d-(Gb—za®? andT, = =a*—a’h+d
We present the proof of the theorem in Section 2.3 of Chapter 2.

Now we apply above theorem to describe some recurrent methods for constructing
families of irreducible polynomials over F, our results are as follows:

(1) Let b=d=0anda=c =1 and construct a recurrent method over F3s. By
above notations in thiscase T, = T, = 2. Let

Fi(x) =Fy(x*+x3+x)

Where F,(x), is an irreducible polynomial of degree n over F3s. For irreducibility
F; (x) by above Theorem we need that (—1)"F,(2), and F,(2), are non-square inFss.
Namely n, is even and F,(2), be non-square in F3s. So we obtain this theorem by
induction on k.

Theorem 9. Let F,(x) be an irreducible polynomial of degree n over Fs, where n is
even. Suppose that F,(2), be non-square in F5s. Define

F(x)=F_ (x*+x3+x) k>1,
8



then F, (x) is an irreducible polynomial of degree n4*, over Fss.
We present the proof of the theorem in Section 2.3 of Chapter 2.

(2) Leta=b =c =d =0, namely F;(x) = Fy(x*), where Fy(x) is an irreducible
polynomial of degree n, over F,. So in this case we have T; = T, = 0, then F; (x), is
irreducible of degree 4n over F,, if and only if (—1)"F,(0), and F,(0) , be non-square
in F,. It is equal that F,(0) be non-square and n is even wheng = 3, (mod 4). By
induction onk, we obtain this theorem.

Theorem 10. Let Fy(x) be an irreducible polynomial of degree n over F;, where n is
even when g = 3, (mod 4). Suppose that F;,(0), be non-square in F;. Define

Fk(x) = Fk_l(x4) k > 1,
then F, (x) is an irreducible polynomial of degree n4*, over F,.

We present the proof of the theorem in Section 2.3 of Chapter 2. Note by this theorem
if we chose F,(x) as a trinomial (pentonomial) irreducible polynomial, so we derive a
families of trinomial (pentonomial) irreducible polynomials, F,(x) over F, of
degree n4*. These kind of irreducible polynomials are important in application.

(3) Leta=c=d =0, namely F; (x) = Fy(x* + bx?), so in this case we have T; =
2
—b: and T, = 0. ThenF,(x), is irreducible of degree 4n, over F, if and only if

2
(-D"F, (—b:) andF,(0), be non-square inF,. By induction onk, we obtain this
theorem.

Theorem 11. Let Fy(x) be an irreducible polynomial of degree n over F,, where n is

2
even wheng = 3, (mod 4). Suppose that F,(0) and F, (— b:) be non-square in F,
and b® + 16b> + 64 = 0. Define

Fri1(x) = F(x* + bx?),k > 1
then F, (x) is an irreducible polynomial of degree n4*, over F,.
We present the proof of the theorem in Section 2.3 of Chapter 2.

Chapter 3 includes a factorization of some composition polynomials when
assumptions on the Cohen's Theorem fail to hold by using M. Kyuregyan and G.
Kyuregyan's Theorem over F,; and by writing some programs we determine all their
irreducible factors. On the other hand we factorize these composition polynomials
where P(x) is an irreducible polynomial of degree n over F.

9



1) (dx® —rx+h)"P (a"q ‘b’”c),

dxq" —rx+h

2) (dx?—rx+h)"P (

axq—bx+c)
dx9-rx+h/’

The main theorems of this part are as follows:
Theorem 12. Let P(x) = ¥, c;x’ be an irreducible polynomial of degree n over F,
and 8,,6; € F;, 6o # &;. Then

n " —x+8
F(x) =(x7" —x+ dl)nP <x - 0)

x?" —x+ 6,
decompose as a product of % irreducible polynomials of degree np over F,.

We present the proof of the theorem in Section 3.1 of Chapter 3.

Theorem 13. Letdy, 81,6, € F;, &y # 61,6, # 0,1. Suppose that P(x) be an
irreducible polynomial of degree n over F;,. Then the polynomial

an - 62x + 60)

Fx) = (x7" = 8x + 6,) P
(0 = (x X+ 0) <x‘?"—62x+61

qn-1
t

decompose as a product of one irreducible polynomial of degree n and
irreducible polynomials of degree nt over F;, wheret = ord(6,).

We present the proof of the theorem in Section 3.1 of Chapter 3.

Theorem 14. Let P(x) = Y™, c;x* be an irreducible polynomial of degree n over F,
and &y, 0; € F;, 6, # 6. Suppose that

1’151 + (60 - 61) (L) =0.

P
Then

xq—x+60)

F(x) = (x9 — np (—
() = & —x+ 80P (G
is decomposed as a product of q irreducible polynomial of degree n Over F,.

We present the proof of the theorem in Section 3.2 of Chapter 3.
10



Theorem 15. Let P(x) = }[_,c;x" be an irreducible polynomial of degree n over F,
and 8y, 6, € F;, 6o # &;. Suppose that

P(1)
Then
x?—x+ 6
FO) = G —x+ 80P ()
1

is decomposed as a product of% irreducible polynomial of degree np over F,.

We present the proof of the theorem in Section 3.2 of Chapter 3.

Theorem 16. Let§,, 61,6, € F;, 8y # 61,6, # 0,1. Suppose that P(x) be an
irreducible polynomial of degree n over F, andgcd(n,q —1) =1. Then the
composite polynomial

x1—8,x + 60)

F(x) = (x7— "P(—
() = (7 = 8+ 8P (L5 g

factors as a product of one irreducible polynomial of degree n and q—:l irreducible
polynomial of degree nt over F, where t = ord(4,).
We present the proof of the theorem in Section 3.2 of Chapter 3.
In Chapter 4, we focused on arithmetics in finite fields specially multiplication.
Let A and B be two elements of F,m and represented with respect to the NB as

m-1 m-1

A= Z ap? and B = Z b2

i=0 i=0
Let C denote their product
as

C=AB=(&xﬁ)x(Exﬁ)=&xMxﬁ,

where the multiplication matrix M is defined by

11



M = F X ﬁ = [‘Bzi+2j].
One can see that
¢, =a® x My xbO®T, 0<i<m-—1,

Where a® = [a;, Ajp1, - ai—q ] and b® = [b;, byyq, ..., bi_q ] are respectively, the
i — fold left cyclic shift of a and b. Also if we set

m—1
j k
867 = > vuh,
k=0
then (¥jo,¥j1,-»¥jm—-1) isthe j —th row of matrix M,. The numbers of 1s in the

component Matrix M, is known as the complexity of the normal basis.

Let P(x) be an N-polynomial of degree n over F,; and a is some root of P(x) in Fn.
Set a standard basis of form

{1,a,a? .., a1},
to present each element
271—1

2 2?2
a.q,a.a’,a.ac,..,a.a

In this basis, each element in the field F,» can be represented by n binary digits. So
we set

(4, =a.a =a?=1(0,0,1,0,...,0),
(4),; = a.a? = a®=(0,0,0,1,0,...,0),
A), =a.a?  =a3=(.),
as rows of the matrix A,,,.,,. Also define
P); =a=1(0,1,0,...,0),

(P)Z = az = (O!OI]‘)OI ---ro)p

12



(P =a? " =(.),

as rows of the matrix P,.,.From linear algebra it can be derived that M, = AP,
where the number of non-zero entries in M, is equal to the complexity of normal basis
of constructed by N-polynomial of P(x). In Chapter 4 by using this method we
compute complexity of families of N-polynomials over F, and F;.

Main results of the dissertation are the following

1) Using Q-Transformation over Fs as follows

Fio (0) = F20x) = x"'F(x + 62x7Y), k> 1,

and introduce families of self-reciprocal irreducible polynomials and N-polynomials
over Fs.

2) Producing a new recurrent method for constructing families of N-polynomials over
F, of the degree np* as follows:

Fo(x) = P(x)

n xP —x
Fk(X) = (Xp —-x+ 6) ka—l (m), k> 1,

3) By using Dickson's Theorem we construct families of irreducible polynomials of
degree 4n*, (k = 1,2, ...) over a finite field of odd characteristics.

4) Factorization of some composite polynomials over finite fields and obtains their
irreducible factors.
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Uwhn Ukhpwpp
Udthnthnud

Yhpownp nuownkph ypu Udkpwskih b inpduy
puqUuiunuuubph pklnipuphy junmgmdubkp

Uohmwwnwtpp Jtpwpbpynud b Jbkpowynp nupwnbph Jpu wbybpwstih b
unpduwy puqUuinudubph Junnigdwip: dEpowynp nuonbph Jpu npdus
wiudbpwstih U unpdwy pwqUuwimudubpp  dbkS  hhwnwppppnipmt tu
ubpuyuginid b wbhuwlwb, b Jhpwpwlwt  juughpubpnud: Uju
wpuwtnwiipnid ubpjuyuguws  tu F; nupwnh  Jpu  wbdkpwskih
puquuunudubph npnowlh nuubp juwemghnt hwdwp unp pblnipkun
Enutwljubp: Udkht dkup gnyg Lup wndby, np npny wuypdwbbph nhypnid
wju  widbpwsth  pwqUwiunudubpp  hwinhuwind B tnpduyg
puquuinudutp: Ubktp twlb ghwwplyl Gup npnp Yndwnghghnt
puquuinudutph JEpnisnipiniup, Epp Ynhtuh phoptdh Gupwngpnipmiup
wbinh snith b npnowlh dpwgph dhengny dkup qguninid kup pnjnp widbpwsth
wpuwnphsubpp:  dhpenwd  Jdkup putwuphlty Gup Ybkpewnp nuownmbph
wnbunipjutt  wnwtdbwhwnlnipmnibutpp,  dwubwynpuwbtu  Jipowynp
nuownbph Ypw puquuyunljdub gnpdnnmipjut juplbnpnipniup b gnyg tup
nylk], pk hynt Lu unpdw) puqUwiunudubpp jupbnp puquuyunldut
gnpénqmipjutt dwdwbwl: Ujuinthtnb ghunwpldl] £ unpdw) puqhutbph
pupnnipniup b oquuugnpdtiny tdphiwnpy dbpnn, dbup hwodby Lup ukp
ynnuhg unwugdus unpdw puquuinudubph puppnipmniabbpn:

Fhqnid uvnugyws hhduwljwt wpyniupubpp pipdws i uinnpl

1. F3s quownh ypw oqgunugnpskinyg

Fis1 (%) = FS(X) = xn'z(k_l)Fk(x +8%x7 1) k=1
Q-dtwthnpunipjnit  (Q-Transformation)—n, utwbnid Gtup hupbhwbplulh
wldkpwstih b utnpdw) puquutinudutph ptnwtthp Fas quowh dpu htnlyuyg
ptnptdh dhongny.
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Etnptd  Yhgmp q=3% npuln s qouyg phy L b Fi(x) =x*+bx+
8% puwpwlniuughtt puquutqud k Fgs quonh dpw, b b 8-t ny qpoyujutb
EEdktntbp kb b b? — 8% ny pupwniuaght Ukl E Fys qupwnnid:

EYnipuhy duny vwhdwkip Fi(x) hwonppuljwinipiniip htnlyjw) duny.
Fr(®) = x%1F_;(x+ 6% 1) k=>1

U ghypnid  (Fr(%)) ko1 hwonppuljwinipjut  jmpwpwignip whnud
hwinhuwinid t t, = 2X wunh&uih hwdwnkntjh hkwnpny(trace-compatible)
unpuw) puquugud: Ut ht, Epb ot puquuiiqudh wpdwntb E, wyuw ot
hwtnhuwinul £ Fysnk nupwnp thnghtt inpuwy Edkunm Fzs nugnh dpu [6].

2. Unwouplyk] t n-p¥k>1 wunhfwbh utnpuw] puquinudbtph
Jupmgdwt  unp  pkimipktn  dbkpnn  Fg qupnmph  Jpu htwnljuyg
nUuynqhghnt tnutwlh heongny [4]:

Fo(x) = P(x)

xP —x
F =P — 6)%k-1F, | ———— k> 1.
K®) = x" —x+9) K 1<Xp_X+8>

3. Oquugnpdkiny Thjunth phnpkup, Ukip Jupmigh) tup 4 - nk wunhg&wh
widbpwskih puquuiunudutph hwenppuljunipyut i  punipwugphs
niukgnn quownbph hwdwn [1,5].

4. Spykp E npnowlh UYndunghghnt puquuinudubph Jbpnisnipmiup
Jtpowynp nuownbph Ypu b unnwugyby k ipwg wdbpwstkih wpunwunphsutpp
htwnljuy dliny [2,3].

dx" —rx+h
axq—bx+C)
dx9—rx+h

n a " _p
(dxq —rx+h) P<aX X+C>

(dx? —rx + h)“P(
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E3IOME
CAU[ MEIFPABU

PEKYPCMBHOE NOCTPOEHMUE HENPUBOAUMDbIX U HOPMA/IbHbIX
NO/IMHOMOB HAA KOHEYHbIMK NONAMU

Pa6ora mocBsieHa IIOCTPOEHUIO HEIPUBOJUMBIX ¥ HOPMAJIBHBIX ITOJMHOMOB Haf
KOHEYHBIMM IOJAMHU. HempuBomuMmsle M HOpMajbHBIE IIOJTHHOMEI, 3aZjlaHHBIE Ha
KOHEYHBIX IIOJIAX, IPeICTAaBIA0T OOJBIION WHTEpeC M B TEOPEeTHYECKUX, U B
IPUKIATHBIX 33afadax. B JamHOH paboTe MBI IIpeACTaBIgeM HEKOTOpHIE HOBEHIE
PeKyppeHTHBIe MeTOABI MAJid IIOCTPOeHHA OIpefieIeHHBIX HOBBIX KJIacCOB
HeNpPUBOJIMMbIX TONWHOMOB Ha mone F,. bBomee Ttoro, mbr moxasamwm, d4TO B
OonpefleleHHBIX  yCJIOBUAX STHM  HEIPUBOJUMBIE  IIOJIMHOMEI  SABJIAIOTCA
HODMQJIBHBIMU IIOJTMHOMAaMH. MBI TakXe IIPOAaHAJIM3HPOBAIN HEKOTOPHIE
KOMITO3UIIMOHHbIE IIOJIMHOMEI, KOTJja IpeAIloNokeHue TeopeMsl KosHa He mmena
MecTa, X C IIOMOUIBIO OIIpeZieleHHOIN IIpOrpaMMBI HAalIM BCe HEIPHBOZMMBIE
MHOXUTETH. B KOHIle MBI OGCYAMIN apu(pMETHKy TeOpUU KOHEYHBIX IIoyeil, B
YaCTHOCTH Jle}iCTBe YMHOXeHH Ha KOHeUHBIX IOJIAX, U II0Ka3aJIu I0YeMy BayKHBI
HOpMaJbHBIE IIOJIMHOMBI BO BpeMfA JelCTBUS yMHOXEHHUA. 3areM ObLla
PacCMOTpeHa CJIOKHOCTh HOPMAJBHBIX 6a3HCOB, M MBI PACCUUTATIU CIOXKHOCTH

MOy YeHHBIX HAMU HOPMAaJIbHBIX IIOJTMHOMOB, UCIOJIb3Ys 3G (EeKTUBHBIN METO.
OcHoOBHbIe pe3ynbTaTbl, NOJIy4eHHble B Te3uce, NpuBeaeHbl HUXKe:

1- MHcnonszysa Q-npeobpaszopanue (Q-Transformation) ua nose Fss,
o(k-1) -
Fir () = FE(x) = x"2 VF(x + 6% 1) k>1
IIosry49aeM CaMO,I[BOﬁCTBeHHOG ceMe¥iCcTBO HEIIpUBOAVIMBIX ¥ HOPMaJIbHBIX

TIOJTMHOMOB Ha ToJie F3s mpu momoutu ciepyomeii TeopeMsl.

Teopema. [Jlomyctum q = 3%, rme s - 4erHoe u4umcio, u Fi(x) = x* + bx + §% —
KBa/[paTHBIH TOMMHOM Ha mose Fis, b u § - HeHyseBse sinementst u b? — 8% - me

KBa,Z[PaTHLIfI JJIEMEHT Ha I10JIe F3S.
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OmpezenuM peKypCHBHBIM METOZOM IIOCIeIoBaTeNbHOCTs Fi(X) cremyomum

obpazom:
Fr(x) = x%1F_;(x + 6%x71) k=>1.

B orom ciyuae xaxpsiii wien mociaegosatensHocTd (Fy (X)) psq sBAseTCH  trace-
compatible HopmanpHBIM TomMHOMOM cTemenu t = 2K, Bomee Toro, ecim oy -
KOp€HB IIOJINHOMaA Fk(X), TOrZa i ABIAETCA IIOJTHOCTBIO HOPMaJIbHBIM 9JIEMEHTOM

nons Fysnk Ha mome Fss [6].

2- DUl TmpeAsoXeH HOBBIM PeKYpPPeHTHBIH METOZ, IIOCTPOEHUS HOPMAaTIbHBIX
IIOJIMHOMOB CTEIleHH n-pka 1 ma mome Fy mpw momomm cremyromero

KOMIIO3UIIMOHHOTO MeToa [4]:

Fo(x) = P(x)

P n XP X
Fk(X) = (X — X+ 5) k_le—l m k> 1.

3- Ucnonesys teopemy JIMKCOHa, MBI IIOCTPOMIM IIOCJIEJOBATENHHOCTH
HeNPUBOZUMBIX IIOTHHOMOB cremeHn 4-nX 11a mormeif, mMeomux
HEYeTHYIO XapakTepuctuky [1,5].

4- Brul maH aHAIU3 HEKOTOPHIX KOMIIO3UI[MOHHBIX IOJIMHOMOB HAa KOHEYHBIX
[IOJIIX Y IIOJIYYeHBI UX HEIPUBOJYMbIE MHOXHUTEIH CJIEAYIOIUM 06pasoM
[2,3]:

ax?" —bx +c

dx9" —rx+h

ax?—bx+c

dxq —rx + h)

(dan —-rx+ h)nP

(dx? —rx + h)“P(

=
o

S

e -
&
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owywip - 1 n.0. Swywpwbwyp - 100 ophGuy
Sywqpyuwé £ 33 GUU PUNP YndwniinbpwjhG

wnihgpwphwjh jwpnpwnnppw)nid
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