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Abstract

Hebbian learning, an important concept in neural networks, is the basis for various
learning algorithms that model the adaptation of neural connections, also known as
synapses. Among these models, Ojas Rule stands out as an important example, giving
valuable insights into the dynamics of unsupervised learning algorithms. The fact that
the final steady state solution of a single layer network that learns using Oja’s rule
equals to the solution of Principal component analysis is well known. However, the
way learning rate can affect the variance of the final parameters is less explored. In
this paper, we investigate how different learning rates can influence the variance of
parameters in Oja’s Rule, utilizing the moment closure approximation. By focusing on
the variance, we offer new perspectives on the behavior of Oja’s Rule under varying
conditions. We derive a closed form equation which connects the parameter variance
with the learning rate and show that the relationship between these is linear. This gives
valuable insights which may help optimize the learning process of Hebbian models.
Keywords: Ojas rule; Hebbian learning; learning rate; neural networks; moment
closure approximation

1. Introduction

During the last decades there has been an intensive amount of research on synaptic plasticity
and learning. Many of these works were inspired by Hebb’s postulate [4]. The main idea
of Hebbian Learning is that the changes in the synaptic transmission efficacy are driven
by correlated firing activities of the neurons connected by the synapse. Hebbian theory
postulates that the connections between neurons become stronger when they are activated
at the same time.

Synaptic wiring processes are widely believed to be an integral part of encoding memories
in the brain [5]. As a result of this, Hebbian Learning has been studied as a biologically
plausible algorithm for extracting patterns from different types of data. It is different from
backpropogation most importantly because it does not require any labeled data and is an
unsupervised learning algorithm. It is believed that this unsupervised approach is the most
common way the brain learns. This makes Hebbian Learning particularly interesting because
of our desire to understand the human brain and because of the scarcity of labeled data in
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many problems [6]. As a result of this, Hebbian learning has found numerous applications
in various fields such as computer vision and modeling of human memory [7, 8].

For a single layer architecture, Hebb’s rule can be formally expressed by the weight
update equation:

y(t) =
N
∑

i=1

wi(t) · xi(t) (1)

wi(t+ 1) = wi(t) + αF (wi(t), xi(t), y(y)) (2)

where wi(t) is the synaptic coupling strength of the i-th input neuron at time step t,
xi(t) is the i-th input neuron value, y is the output neuron value, and α will be referred as
the learning rate of the system.

This is the general form of Hebbian Learning. F here is an undetermined function with
an important limitation being the exclusion of any argument other than the existing synaptic
coupling strength and the values of pre-synaptic and post-synaptic neurons [9]. Building on
Hebb’s rule, different specific forms of learning rules have been developed over time[10, 2].

The analysis provided in this paper will be focused on studying the Oja’s rule. Oja’s rule is
solving stability problems encountered in other learning rules. It projects high-dimensional
data into lower dimensions while preserving the maximal variance, thus generalising the
Principal Component Analysis. The updating rule for the weights in Oja’s Rule is given by:

wi(t+ 1) = wi(t) + α[xi(t)y − y2wi(t)] (3)

where wi(t) is the weight of the i-th variable at time step t, xi(t) is the i-th input variable,
y is the output, and α is the learning rate. The term y2wi(t) in the update rule ensures
that the weights do not grow indefinitely, overcoming the stability limitation frequently
encountered in Hebb’s rule [1].

When creating artificial neural networks with Oja’s rule or other similar rules, learning
rate becomes one of the most important parameters. High learning rates may cause diver-
gence, while low learning rates may cause slower training time. This creates a tradeoff, which
can be controlled by adjusting the learning rate.

In backpropogation based neural networks, learning rate schedulers that adapt based
on the loss function are commonly used to enhance the convergence of the network [19].
However, in the context of Oja’s Rule, there is no explicit loss function, and thus, traditional
learning rate schedulers cannot be employed. This necessitates alternative approaches for
learning rate adjustment in Hebbian learning models. Further research is needed to explore
these possibilities and to understand the impact of learning rate on the convergence and
stability of Hebbian-based networks.

This paper concentrates on analyzing the impact of learning rate on final variance of the
parameters in Oja’s Rule. A closed form formula is derived that connects the final variance of
parameters with the learning rate of the system for a bivariate normal distribution data using
the moment closure approximation [14, 15, 16]. This formula is validated using comparison
with numerical values derived with computer simulations. Understanding these variance
relations can help in establishing a metrics on how well converged is the lossless network
that can be controlled simply by adjusting the learning rate.
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2. Problem Setup

In this work, we consider a two-variable case, wherein the two variables are denoted as x1

and x2. The data for these variables is assumed to be generated from a bivariate normal
distribution. Without loss of generality, we focus on normalized data. This assumption is
crucial as it simplifies the covariance matrix and aids in further analysis.

The data (x1, x2) is modeled as a bivariate normal distribution with the following prop-
erties:

1. The mean of the distribution is 0 for both variables, i.e., µx1
= µx2

= 0.
2. The data is normalized, so the variances σ2

x1
and σ2

x2
are both 1.

Given the above, the covariance matrix Σ of the distribution is:

Σ =

(

1 ρ

ρ 1

)

(4)

where ρ is the correlation coefficient between x1 and x2. The value of ρ lies in the
interval [−1, 1], where ρ = 1 indicates a perfect positive correlation, ρ = −1 indicates a
perfect negative correlation, and ρ = 0 indicates no correlation.

Given the above properties, the distribution of (x1, x2) is denoted as:

(x1, x2) ∼ N (0,Σ) (5)

where 0 is a vector of zeros representing the mean, and Σ is the covariance matrix as
defined previously.

The specific structure of the covariance matrix has significant implications for learning in
neural networks employing Oja’s Rule. It has been shown that Oja’s rule extracts principal
components from the data, trying to create the signal with the highest variance [1]. As the
data comes from a normalized distribution with known correlations, the learning dynamics
and, as we will see in section 4, the final variance of the parameters in Oja’s Rule can be
analyzed as a function of the learning rate α and the correlation coefficient ρ.

3. Steady-State Solution

It is known that the stable steady-state solution of Oja’s rule matches with the solution of the
Principal Component Analysis(PCA), meaning that our weight vector will be an eigenvector
of the covariance matrix that corresponds to the biggest eigenvalue (other eigenvectors are
non-stable solutions, which means that if you move w a little away from this solution, it
won’t come back)[11, 12, 13, 1].

A sketch of the proof will be provided, and the exact stable solutions for the bi-variate
case will be calculated in this section. Lets first define x and w as:

x =













x1

x2

...
xn













, w =













w1

w2

...
wn













(6)

Now we can derive the steady-state solution by asserting that the expected value of the
change of the weights is equal to zero.

y = wTx = xTw
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1

α
E[∆w(t)] = E[yx− y2w]

= E[xy − y2w]

= E[(xxT )w − (wTx)(xTw)w]

= E[(xxT )]w − (wTE[xxT ]w)w

= Σw − (wTΣw)w = 0

From this, we have that at the steady-state w is an eigenvector of Σ, whose eigenvalue λ
is equal to (wTΣw). From this we can derive the L2 norm of the steady-state solution.

λ = (wTΣw) = wTλw = λwTw

wTw = 1

‖w‖22 = 1

This will allow us to find the steady-state solution for our bi-variate case. If our correla-
tion ρ is positive, the largest eigenvalue will be λ = 1+ ρ, and the steady-state solution will
be

w = ±
[

√
2

2√
2

2

]

.

If ρ is negative, we will have λ = 1− ρ and

w = ±
[

√
2

2

−
√
2

2

]

.

The sign of the steady-state solution will depend solely on the initial values of the weights.

4. Variance of the weights at the steady state

Let’s define the mean and the variance of the weights during the steady-state solution.

µi(t) = E[wi(t)]

Vi(t) = E[(wi(t)− µi(t))
2]

Vij(t) = E[(wi(t)− µi(t))(wj(t)− µj(t))]

µ̂i = lim
t→∞

µi(t) =

√
2

2

V̂i = lim
t→∞

Vi(t), V̂ij = lim
t→∞

Vij(t) (7)

From this point on, we will do the calculations only for the positively correlated pairs.
The same calculations will hold if ρ is negative as well. Let’s introduce auxiliary variables
w̄1 and w̄2 for describing the state of our system as the difference between the weights and
their steady-state solutions.
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w̄1 = w1 −
√
2

2

w̄2 = w2 −
√
2

2
(8)

This notation is natural as the variances whose steady-state solution we are trying to
calculate can be expressed by these variables using (8) and (7) as V1 = E[w̄1

2], V2 = E[w̄2
2]

and V12 = E[w̄1w̄2]. According to (3), those variables will be updated at each step by the
following rule.

w̄1(t+ 1) = w̄1(t) + α
[

x1(t)y(t)− y(t)2w1(t)
]

(9)

w̄2(t+ 1) = w̄2(t) + α
[

x2(t)y(t)− y(t)2w2(t)
]

If we substitute the values of y, w1 and w2 in this by their representations through x1, x2,
w̄1 and w̄2, we get the following update rule for our auxiliary variables after the expansion
of (9)1.

w̄1 ← w̄1 + α

((

1

2
√
2
− w̄1

2
− 3w̄1

2

√
2
− w̄1

3

)

x2

1

+

(

− 1

2
√
2
− w̄1

2
− w̄2 −

√
2w̄1w̄2 −

w̄2
2

√
2
− w̄1w̄2

2

)

x2

2

+
(

−2w̄1 −
√
2w̄1

2 − 2
√
2w̄1w̄2 − 2w̄1

2w̄2

)

x1x2

)

(10)

w̄2 ← w̄2 + α

((

1

2
√
2
− w̄2

2
− 3w̄2

2

√
2
− w̄2

3

)

x2

2

+

(

− 1

2
√
2
− w̄2

2
− w̄1 −

√
2w̄2w̄1 −

w̄1
2

√
2
− w̄2w̄1

2

)

x2

1

+
(

−2w̄2 −
√
2w̄2

2 − 2
√
2w̄2w̄1 − 2w̄2

2w̄1

)

x1x2

)

(11)

From the symmetry of the problem, it is obvious that V̂1 = V̂2. This means, that to
calculate the steady-state variances tracking the expected values of w̄1

2 and w̄1w̄2 is sufficient.
Rules of their update can be calculated by multiplying (10) with itself and with (11). After
these multiplications, we will have the following update rule.

w̄2
1 ← w̄2

1 + α2

(

x4
1

8
− x2

1x
2
2

4
+

x4
2

8

)

+ α2w̄2
2

(

−1

2
x2

1x
2

2 +
3x4

2

2

)

+ w̄1w̄2

(

− 2αx2

2 + α2(− 2x3

1x2 + 6x1x
3

2 + 2x4

2)
)

1For simplicity from now on we will use F (w1, w2)← G(w1, w2, x1, x2) to notate update rules of the form
F (w1(t+ 1), w2(t+ 1)) = G(w1(t), w2(t), x1(t), x2(t)).
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+ w̄2
1

(

α
(

−x2

1 − 4x1x2 − x2

2

)

+ α2

(

−5x4
1

4
+ x3

1x2 + 6x2

1x
2

2 + 3x1x
3

2 +
x4
2

4

))

+ w̄1f1(x1, x2) + w̄2f2(x1, x2) +
∑

i+j≥3

(

wi
1w

j
2fij(x1, x2)

)

(12)

w̄1w̄2 ← w̄1w̄2 + α2

(

−x4
1

8
+

x2
1x

2
2

4
− x4

2

8

)

+ w̄1
2

(

−αx2

1 + α2

(

x4

1 +
5x3

1x2

2
− x1x

3
2

2

))

+ w̄2
2

(

−αx2

2 + α2

(

x4

2 +
5x1x

3
2

2
− x3

1x2

2

))

+ w̄1w̄2

(

α
(

−x2

1 − 4x1x2 − x2

2

)

+ α2

(

−x4
1

4
+ 2x3

1x2 +
13x2

1x
2
2

2
+ 2x1x

3

2 −
x4
2

4

))

+ w̄1g(x1, x2) + w̄2g(x1, x2) +
∑

i+j≥3

(

wi
1w

j
2gij(x1, x2)

)

(13)

Here f1, f2, fij, g1, g2, and gij are polynomial functions of two variables. In order to
estimate the steady state variances we must calculate the expected values of both sides of
the above equations at the limit of t→∞. In order to complete these calculations we must
take into account the following.

• At the limit of t → ∞ we conclude from the symmetry of our multivariate Gaussian
data distribution that V̂1 = V̂2. We will notate this variance using V̂ .

• Since w̄i(t) and xj(t) are independent for any i and j

E

[

F

(

x1(t), x2(t)

)

G

(

¯w1(t), ¯w2(t)

)]

= E

[

F

(

x1(t), x2(t)

)]

E

[

G

(

¯w1(t), ¯w2(t)

)]

• x1(t) and x2(t) are coming from a multivariate normal distribution, their moments can
be calculated using Isserlis’ theorem[17, 18].

E[x1(t)] = E[x2(t)] = 0

E[x3

1(t)] = E[x3

2(t)] = 0

E[x2

1(t)x2(t)] = E[x2

2(t)x1(t)] = 0

E[x2

1(t)] = E[x2

2(t)] = 1

E[x1(t)x2(t)] = ρ

E[x2

1(t)x
2

2(t)] = 1 + 2ρ2

E[x3

1(t)x2(t)] = E[x3

2(t)x1(t)] = 3ρ

E[x4

1(t)] = E[x4

2(t)] = 3
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For calculating the expected values of polynomials involving w̄1 and w̄2 we will use the
second-order moment closure approximation [14, 15, 16]. We will also keep in mind that at
the limit of t→∞ expected values of w̄1 and w̄2 are equal to zero.

E[F (w̄1w̄2)] ≈
1

2

(

∂F (w̄1w̄2)

∂2w̄1

+
∂F (w̄1w̄2)

∂2w̄2

)

V +

(

∂F (w̄1w̄2)

∂w̄1∂w̄2

)

V12

hus we may obtain the following equations for the expected values of polynomials involv-
ing w̄1 and w̄2

E[w̄1] = E[w̄2] = 0

E[w̄2
1] = V1

E[w̄2
2] = V2

E[w̄1w̄2] = V12

If i+ j ≥ 3, then E[w̄i
1w̄

j
2] = 0

Now we can finally calculate the expected values of both the right-hand sides and the
left-hand sides of the update rules described in (12,13). We will do all calculations for the
limit of t→∞.

α(
1

2
− ρ2

2
) + (−2− 4ρ+ α(7 + 12ρ+ 11ρ2))V̂ + (−2 + α(6 + 12ρ))V̂12 = 0

α(−1

2
+

ρ2

2
) + (−2 + α(6 + 12ρ))V̂ + (−2− 4ρ+ α(5 + 12ρ+ 13ρ2))V̂12 = 0

These two equations will allow us to calculate the steady-state solutions V̂ and V̂12. Since
α ≪ 1, V̂ ≪ 1 and V̂12 ≪ 1, we can neglect all terms that include αV̂ or αV̂12. Thus we
obtain the following closed-form formula for calculating the variances at the steady-state.

V̂ = α
1− ρ2

8|ρ| (14)

V̂12 = −V̂ (15)

As we can see after sufficiently long iterations the correlation between w1 and w2 is equal
to −1. This means that they jump around the steady state solutions, always being on the
different sides of it. Their individual variance is proportional to the learning rate, which
means that decaying learning rate once the steady state is reached will also proportionally
decrease the variance of the parameters, thus attributing to the better convergence of the
model.

5. Experiments

To validate the results of (14) and (15) we have created a simple experimental setup. Initially,
we set w1 = 0 and w2 = 1. At each iteration we generate a new data point from the bi-
variate Gaussian distribution (5). Then we train for sufficiently long iterations, until the
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Figure 1: If we train the system from scratch many times and calculate the variance of the
final weight w1, it will be very close to the analytically calculated value of (14) for learning
rates that are sufficiently small for converging. Here it is checked for 4 different correlation
coefficients, both positive and negative.
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steady-state distribution is reached. We repeat this training process from scratch 500 times,
save the final weights after each training process and calculate the variance of these 500
weights2. Then we repeat this exact same process for different learning rates in order to
capture the relation between the final variance of the weights and the learning rate α.

This exact same process is repeated for different sets of data points generated from
multivariate normal distribution with different correlation coefficients ρ in order to check
the dependence of variance on correlation found in (14). Comparisons of the variances with
the analytic values obtained in the previous section are represented in Figure 1. 3

6. Conclusion

This article proposes an analysis of parameter variance in Oja’s Rule using moment closure
approximation. The steady-state variance is studied, leading to a closed-form equation
connecting variance to the learning rate by a linear relation.

A key finding is the linear relationship between parameter variance and learning rate,
showing that variance measures convergence. For small learning rates, variance is directly
proportional to the learning rate, derived from a simple closed-form equation and validated
through simulations across various input correlations.

These results have potential applications in optimizing learning rate schedulers and algo-
rithms by controlling variance, thus improving convergence efficiency without extra compu-
tational cost. This can guide unsupervised learning models based on Ojas Rule in achieving
better results without a loss function.

As we can see, once the the learning rate is small enough for the convergence of the
model(usually achieved with α < 0.1 for the provided synthetic data), our closed form
formula is able to estimate the final variance of parameters with good enough accuracy.
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