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GENERAL DESCRIPTION OF THE WORK

Entropy is a foundational quantity across information theory, statistics, physics, and artificial in-
telligence. In information theory, Shannon entropy characterizes average code length and limits
of lossless compression [1-4]. In statistics, entropy is frequently used as an inference principle to
reconstruct distributions from partial information such as empirical moments [5-9]. In classical ma-
chine learning, decision tree algorithms often use the Shannon entropy (information gain) to choose
split features [10]. Similarly, entropy-based penalties have been proposed for model regularization,
effectively discouraging overly confident (low-entropy) predictions [11]. In modern large language
models (LLMs), entropy is computed from the next-token predictive probability distribution and is
used implicitly or explicitly for confidence estimation and the regulation of sampling and decoding
strategies [12—15].

We argue that entropy becomes genuinely informative only when it is tied to a clearly defined
probabilistic object and a clearly stated decision purpose. In many applied papers and engineering
systems, entropy is introduced as a general synonym for uncertainty. That habit is risky. A single
numerical entropy value can refer to different objects that live on different sample spaces. It can
be computed before or after decoding transforms. It can be used for different decisions, such as
estimation, selection, routing, and compute control. When these choices are not spelled out, entropy
claims can look universal even though they are not.

To avoid that failure mode, we develop a simple and strict methodology. Every entropy-based
argument is framed through three requirements. First, the probabilistic object must be specified.
This includes the sample space and the distribution that lives on it. Second, the purpose must be
specified. This means a decision problem with an explicit loss, utility, or measurable objective.
Third, validation must be specified. Validation means that the claim is tested against outcomes
and compared to a baseline that corresponds to not injecting structure that is unsupported by the
data [16].

This object—purpose—validation discipline is applied across three domains. The first domain is
finite-sample inference for categorical distributions through maximum-entropy (MaxEnt) methods.
The second domain is interpretable representation learning, where nonnegative matrix factorization
(NMF) is reinterpreted through a probabilistic and common-cause lens. The third domain is relia-
bility and compute-aware adaptation in LLMs, where token entropy is examined as an uncertainty
signal, then transformed into training and inference policies that allocate compute.

Throughout the work, entropy is coupled to Kullback-Leibler (KL) divergence because KL pro-
vides a direct bridge to decision risk and approximation error. Concretely, for a discrete distribution
p on X, Shannon entropy is

S(p) == ). p(x)log p(x),

xeX

and KL divergence between ¢ and p is

: q(x)
KL(4llp) = ;(q(x) log 755

Entropy measures dispersion within one distribution. KL measures mismatch between two
distributions. Many practical decisions in inference, representation learning, and model evaluation
can be written as minimizing expected KL or a closely related functional. This is why we use
forward KL risk in the inference chapter. This is also why later chapters treat entropy as a candidate
predictor of error risk and a candidate driver of compute allocation.



A key technical issue for the LLM chapters is the precise definition of the entropy object. Let
Xx<; denote the input prompt (the sequence of tokens up to position 7), and let V be the model’s
full vocabulary of possible next tokens. The model assigns a probability pg (v | x<;) to each token
v € V. The next-token entropy is then defined as

;== polv | x<)logpo(v | x<),
veV
where log is the natural logarithm. In other words, S; is the Shannon entropy of the full output dis-
tribution over the vocabulary. (Any decoding-time operations like temperature scaling or truncation
would change this distribution, so comparisons of S; require fixing these choices.) By default, we
use the entropy of the original, full-vocabulary distribution unless explicitly stated otherwise.

The broader motivation is contemporary. Language models are deployed in settings where
reliability matters. Compute is also a hard constraint both at training time and at inference time [17,
18]. Entropy is one of the few signals that is cheap to compute and available inside most probabilistic
models. We show when this signal is useful, when it is not, and how to convert validated entropy
measurements into decisions.

RELEVANCE OF THE RESEARCH TOPIC

The work is relevant because it targets a recurring gap between conceptual language and opera-
tional practice. Entropy is routinely described as a universal measure of uncertainty. In reality,
uncertainty is task-dependent and decision-dependent. An uncertainty signal is valuable only if it
predicts something that matters, such as error probability, future loss, or the marginal benefit of
extra compute [16,19,20].

In finite-sample inference, sparse data regimes are common. In such regimes, it is easy to
overfit noise by imposing constraints that look meaningful but are statistically unstable. Entropy-
maximizing inference is often presented as conservative. We show that it is not automatically con-
servative. It can add structure that harms risk when constraints are noisy or misaligned. This
matters because MaxEnt is still used in scientific modeling and in ML pipelines where constraints
are estimated from limited data [21,22].

In representation learning, interpretability claims often collapse under perturbations. If basis el-
ements change drastically across random seeds or small noise, then the representation is not reliable,
even if reconstruction error is small. By tying NMF to a probabilistic common-cause view and by
introducing a predictability-based effective rank, we contribute tools to select representations that
are stable and interpretable in practice.

In language model deployment, entropy is widely used as a confidence proxy. However, con-
fidence proxies must be validated across question types and failure modes. A single global corre-
lation is not enough. This work’s stratified evaluations matter because they clarify when entropy
can support routing and abstention policies and when additional reasoning-aware signals are re-
quired [16,23,24].

Finally, compute-aware adaptation is an urgent theme. Distillation, reasoning supervision, and
multi-model pipelines all introduce explicit costs. We use entropy not as a descriptive statistic
but as a control variable for allocating expensive supervision and expensive reasoning. This turns
uncertainty estimation into a resource allocation problem with measurable efficiency benefits.

AIMS OF THE WORK

The first aim is to formalize entropy-driven reasoning as a discipline that specifies the probabilis-
tic object, the decision purpose, and the validation protocol. We treat this as a methodological
contribution. It is also the thread that connects the five chapters.



The second aim is to determine when maximum entropy inference improves categorical dis-
tribution estimation under finite samples. This aim includes identifying regimes where MaxEnt is
meaningful and regimes where it is worse than a symmetry baseline. It also includes isolating the
role of constraint noise, constraint choice, and the numerical encoding used to define moments.

The third aim is to reinterpret nonnegative matrix factorization through a probabilistic common-
cause model. The goal is not only reconstruction but also interpretability and stability. The work
aims to derive an effective rank selection criterion grounded in predictability and to quantify sta-
bility under weak noise and random initialization.

The fourth aim is to validate next-token entropy as an uncertainty signal for multiple-choice
question answering. The work aims to separate knowledge-dominated questions from reasoning-
dominated questions, then to test entropy as an error discriminator and to examine calibration be-
havior across regimes.

The fifth aim is to convert validated entropy measurements into adaptive compute policies.
This includes a fine-tuning policy that selectively applies costly chain-of-thought (CoT) distillation
to high-entropy examples. It also includes an inference policy that separates reasoning generation
from answer generation, then studies how model size and reasoning trace quality interact.

SCIENTIFIC NOVELTY

We contribute novelty through validated claims and operational tools. It proposes a risk-based cri-
terion for when the maximum-entropy (MaxEnt) estimator is beneficial. The estimator is evaluated
under forward KL risk, with averaging over sampling noise and over a family of priors. A concrete
symmetry baseline is used, which turns the question of usefulness into a measurable comparison.

We treate representation dependence as a first-class boundary for MaxEnt. Moment-constraint
MaxEnt depends on the numerical encoding of categories. This dependence is not a minor detail.
It can dominate finite-sample performance. We demonstrate that misaligned encodings can render
MaxEnt worse than the uniform baseline even when other estimators remain robust.

In representation learning, we contribute a predictability-grounded effective rank for NMF that
is motivated by a common-cause interpretation. It also supplies a stability framework that mea-
sures how bases vary across seeds and noise. The result is a rank selection principle that is tied to
interpretability and reproducibility rather than to reconstruction error alone.

We formulate directional entropy diagnostics for approximate factorization. It then tests these
diagnostics empirically. This gives entropy a role as a falsifiable description of how factorization
redistributes structure between images and basis elements.

In LLM evaluation, we provide a conditional validity statement for token entropy as uncertainty.
It shows that entropy can be a strong error discriminator in knowledge-dominated regimes, while
becoming weaker in reasoning-dominated regimes. This result supports regime-aware uncertainty
evaluation instead of universal confidence claims.

Finally, we use entropy to allocate compute in training and inference. In fine-tuning, entropy
gates which examples receive chain-of-thought distillation. In inference, reasoning traces are gen-
erated by a thinker model and consumed by an answerer model. We measure how performance
depends on the thinker and how weak reasoning traces can harm even strong answerers.

PRACTICAL AND THEORETICAL SIGNIFICANCE

The practical significance is that we provide clear guidance on when entropy-based methods help
and when they fail [16]. Inference practitioners can use the MaxEnt results to avoid overconfi-
dent structure injection in sparse regimes and to understand when encoding choices create hidden
assumptions. Representation learning practitioners can use the NMF rank and stability tools to



produce parts-based decompositions that are reproducible. LLM practitioners can use the uncer-
tainty findings to avoid naive entropy thresholding in reasoning-heavy tasks. They can also use the
compute allocation ideas to build pipelines that achieve better accuracy per token.

The theoretical significance is that the we connect entropy and KL-based ideas across domains
through a shared validation framework. We also highlighte the role of representation in defining
what entropy measures. Inference, factorization, and language modeling all depend on how states
are encoded. We show that this dependence is not peripheral. It is central to whether entropy-based
reasoning is meaningful.



CONTENT OF THE WORK

Introduction

The introduction surveys entropy across information theory, inference, classical ML, and LLM
practice [1,2,5,10, 11]. It emphasizes that entropy is a functional of a distribution and of a sample
space. It is not a property of a single observation. This distinction matters because many practical
systems compute entropy from one model output and then treat the result as a universal confidence
score. We argue that such a use is defensible only when validated for the target decision.

The introduction also emphasizes comparability. For LLMs, next-token entropy can be com-
puted from the raw logits distribution. It can also be computed after temperature scaling or trun-
cation. These choices change the object. As a result, two entropy values can be incomparable if
they are computed under different decoding rules. We therefore fix the entropy object when making
comparisons and varies it only when explicitly stated.

The introduction motivates the object—purpose—validation discipline with examples. In Max-
Ent inference, the object is an estimated categorical distribution. The purpose is minimizing risk
under a chosen loss. Validation is performed through expected risk and a symmetry baseline. In
NMF, the object is a probabilistic image distribution and a latent-factor decomposition. The pur-
pose is interpretable stable representations. Validation includes stability across seeds, predictability
constraints, and denoising performance relative to PCA. In LLM chapters, the object is the next-
token distribution or the distribution along a reasoning trace. The purpose is either error prediction
or compute allocation. Validation is performed by stratified error discrimination and by measured
accuracy—token trade-offs.

Chapter 1: Validity limits of the maximum entropy method
This chapter asks when the maximum-entropy (MaxEnt) principle provides a useful estimate of an
unknown discrete distribution from a finite sample. Let Z take n ordered outcomes z; < -+ < z,
with unknown probabilities ¢ = {qx};_,, gk = q(Z = zx). From a sample of length M we observe
counts {my}y_, with 3, my = M and we compare estimators § = {g}.

We measure performance using the forward Kullback—Leibler loss

n
I8 k
Klg.q] = Y qiin ik, (1)
=1 qdk

We average this loss over samples drawn from g and then over a prior on g. This gives the Bayes
risk (K).
A baseline is the data-free MaxEnt solution, which is uniform,

1
0
a = ©)

An estimator is called meaningless in a regime if it performs worse on average than g%, that is

(K[q.41) > {(K[q,q!°1]). In that case, using data through the estimator is worse than ignoring the
data.
We focus on three estimator families. Regularized maximum likelihood uses

mr+b
M +nb’

3

pmL(zx) =

where b > 0 shrinks toward uniformity. Bayesian posterior means under Dirichlet priors have the
form p(zx) = (mg +ar)/(M+ A) with A = 3 ar, and mixtures of Dirichlets yield Bayes-optimal



M || (Kpayes)  (Kpages) (KMLYb=bop (KmL)p=1 | (K1) (K1) (€op)
35 0.014 0.206 0.180 0.204 0.048 0.047 (0.91)
25 0.015 0.207 0.188 0.210 0.053 0.051 (0.87)
15 0.017 0.209 0.197 0.214 0.065 0.060 (0.84)
11 0.022 0.209 0.201 0.215 0.077 0.069 (0.78)
7 0.035 0.209 0.205 0.215 0.105 0.084 (0.69)
5 0.052 0.210 0.207 0.214 0.141 0.101 (0.59)
3 0.083 0.210 0.209 0.213 0.268 0.140 (0.50)
1 0.150 0.211 0.211 0.212 — — (=)

Table 1: n = 60 with zx = k. The prior is a two-component Dirichlet mixture that preserves
{qr) = 1/n and encodes conditional rank correlations, with ¢y = 0.3 and € = 1.1. The data-free
baseline (K [q, g[%1]) equals 0.212. Values above 0.212 are worse than ignoring data. Columns
show the Bayes-optimal estimator for the mixture prior, a misspecified Bayes estimator that collapses
the mixture to one Dirichlet, regularized ML with b = by and with b = 1, MaxEnt with the first-
moment constraint, and shrunk MaxEnt with &, in brackets. Averages are computed numerically

by sampling 10% probability vectors and, for each, 10> samples of length M. For M = 1, the first-
moment MaxEnt estimator can be degenerate for extreme samples, so those entries are omitted.

estimators for the KL loss while becoming more sensitive to prior mismatch. MaxEnt with a first-
moment constraint fixes the empirical mean u; = ﬁ ZMM:I i, and gives the Gibbs form

e Bk

gM(z) = ST 8 chosen so that Zq“](zk)zk = . )
=1 k
We also use a shrunk variant
[ e~ €B(zi—p1)
9 (z) = 0<é<, 5)

p e~ éB(zi—1)’

where & is selected using prior information to reduce (K).

The main point is simple. In sparse samples, MaxEnt with empirically fitted constraints can
overfit unless the prior supports the structure implied by those constraints. When the prior does
carry compatible structure, MaxEnt can become highly competitive. A key example is a prior that
preserves {qx) = 1/n but introduces conditional rank correlations between the ordering of z; and
the ordering of g.

Table 1 shows this regime. The prior is a two-component Dirichlet mixture. One component
encourages ¢ < --- < ¢, and the other encourages ¢ > --- > ¢, each with probability 1/2. In
this setting, the first-moment constraint is informative because the empirical mean carries ordering
information. MaxEnt can then outperform frequency-based estimators that do not use that ordering.

The table supports three conclusions. First, when the prior contains the ordering structure, first-
moment MaxEnt can beat even optimally regularized ML for M > 5 and can remain well below
the baseline 0.212 in the sparse regime M < n. Second, Bayesian procedures can fail badly under
prior misspecification. The collapsed single-Dirichlet Bayes estimator sits close to the baseline and
performs far worse than MaxEnt for M > 5 in this experiment. Third, shrinkage of the MaxEnt
constraint can help at small M, but it requires additional prior input through £.



Overall, MaxEnt is not a universally safe default in finite samples. In sparse data, it is mean-
ingful when the constraints are supported by genuine prior structure. When that support is absent,
MaxEnt can overfit and lose to the uniform baseline. When it is present, as in Table 1, MaxEnt can
be competitive with and sometimes superior to standard frequency-based estimators.

Chapter 2: Nonnegative Matrix Factorization, PCA, and the Principle of the Com-
mon Cause
This chapter studies nonnegative matrix factorization (NMF),

R
Pri % Pri= ) BayWpi,  B,W 20,
b=1

and develops a probabilistic interpretation that links NMF to a common-cause model. The starting
point is to treat each image column 7 as a probability distribution over pixels. After normalization,
the pixel index 7 becomes a discrete variable and the image index i becomes another discrete vari-
able, so the dataset defines a joint distribution p(mr,i). NMF can then be read as an approximate
latent-variable factorization,

R
(i)~ Y p(r | b) p(i | b) p(b),
b=1

where b indexes latent basis components. In this view, b plays the role of a (candidate) common-
cause variable that explains dependence between x and i through conditional independence structure
in the sense of the Principle of the Common Cause (PCC) [25-27]. The chapter does not claim that
NMEF recovers causal truth; rather, PCC is used as a modeling lens that yields testable, operational
criteria for selecting and validating decompositions.

A key contribution is an operational rank-selection criterion grounded in predictability. In an
exact common-cause factorization, conditioning on the latent state often yields sharper predictions
than conditioning on the original variable. In the approximate setting, the chapter defines an effec-
tive rank R, as the smallest rank at which this predictability property holds broadly across pixel—
image relationships, up to a controlled tolerance that allows a small fraction of violations in noisy
data. This yields a practical R(&, 1) notion that remains meaningful under perturbations, unlike
criteria that can fail in weak-noise regimes.

Stability is treated as a central validity requirement for interpretability. Because NMF is non-
convex and nonidentifiable, different runs can yield different bases even when reconstruction error
is similar. The chapter therefore evaluates basis reproducibility across random seeds and across
noise realizations, and it makes this assessment explicit with a matching-based stability test. Two
NMEF runs produce two sets of basis images {Ba}ff:l and {B[bnolsy ]}ff:]. Similarity is measured by
cosine distance between vectorized basis images, and components are paired by solving a linear
assignment problem that minimizes the total matched distance across all pairs. Figure 1 illustrates
the resulting matched pairs near the effective rank: the left basis image in each pair is learned from a
clean half of UTKFace, while the right basis image is learned from an independently trained, noise-
corrupted half. Even when some pairs are not extremely close by cosine distance, they frequently
match semantically by highlighting the same facial part. This qualitative agreement supports the
operational claim: near R, the representation is reproducible in the sense that it recovers similar
parts under weak-to-moderate perturbations, whereas at substantially larger ranks stability degrades
as the factorization begins to overfit idiosyncrasies and noise.
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Cosine distance: 0.111 Cosine distance: 0.064 Cosine distance: 0.044

Cosine distance: 0.272 Cosine distance: 0.028 Cosine distance: 0.244
L=

Cosine distance: 0.132 Cosine distance: 0.134 Cosine distance: 0.889

NS Ol 0.

Figure 1: Illustration of basis-image stability via matching under perturbations (UTKFace dataset).
Each row shows an optimally matched pair of NMF basis images at rank R = 36. Left: a basis
image learned from the first half of the dataset. Right: the matched basis image learned from the
second half after applying symmetric pixel-flip noise with probability & = 0.25 (and using a different
optimization seed). Pairs are obtained by solving a global assignment that minimizes the total cosine
distance between basis vectors across the two runs. Many matched pairs remain semantically aligned
(e.g., emphasizing similar facial regions), illustrating reproducible parts-based structure near the
effective rank.

The chapter also uses entropy as a directional diagnostic of how the approximation reshapes
distributional structure. For each image i, the normalized distribution p (7 | i) has entropy

Si ==Y p(xli)inp(x|i).

The NMF approximation induces j(x | i) and thus S;. Empirically, approximate factorization often
smooths the per-image pixel distributions, yielding S; < S; in typical cases. This is not presented
as a universal law; it is treated as an observable signature of how the approximation redistributes
mass (often blurring sharp pixel-level structure while retaining higher-level parts).

At the same time, basis-level distributions p(7r | b) often become more localized for ranks in
the stable regime, which corresponds to lower basis entropies and provides a quantitative reflection
of the parts-based property that motivates NMF interpretability.

Principal component analysis (PCA) is used as a baseline. Truncated singular value decompo-
sition (SVD) provides the best rank-R reconstruction under Frobenius norm, making it a principled
comparator in denoising and reconstruction-focused tasks. The chapter emphasizes that PCA and
NMF answer different questions: PCA is optimal for reconstruction error under a chosen norm,
whereas NMF trades reconstruction optimality for nonnegativity, interpretability, and a latent-
source structure that can be assessed through PCC-style predictability and through reproducibility
tests such as the matched-basis stability shown in Fig. 1. In this way, model selection becomes ex-
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plicitly multi-objective: reconstruction error alone is insufficient when the scientific or engineering
goal is a stable, interpretable representation.

Chapter 3: When an LLM is apprehensive about its answers and when its uncer-
tainty is justified

This chapter examines token entropy as an uncertainty signal for multiple-choice question answer-
ing (QA). The operational questions are: when the model’s answer distribution is diffuse, does
error probability increase, and when it is sharp, does correctness increase? The chapter evaluates
both discrimination (ranking errors by entropy) and calibration (mapping entropy to correctness
probabilities).

The object is the model’s next-token distribution at answer time. Entropy is computed from the
full vocabulary distribution. This choice aims to capture model belief rather than the behavior of a
sampling rule. The chapter emphasizes that entropy can be distorted by decoding transformations.
It therefore fixes the definition and uses it consistently in evaluation.

A key methodological feature is stratification. Multiple-choice QA mixes failures caused by
missing knowledge and failures caused by faulty reasoning. The chapter introduces an auto-
mated annotation pipeline, using model-as-judge, to label questions by whether they are primar-
ily knowledge-dominated or reasoning-dominated. It also approximates reasoning burden through
step-like heuristics and structured judgments. The chapter treats these labels as imperfect. It uses
them for stratification rather than as ground truth.

The main result is conditional validity. In knowledge-dominated regimes, entropy tends to
be higher for incorrect answers than for correct answers. This yields useful discrimination. In
reasoning-dominated regimes, entropy becomes weaker as a predictor. The model can be confident
and wrong. It can assign high probability to a wrong option because the internal reasoning is flawed
or because it anchors early on a misleading pattern. In that case, the output distribution remains
sharp even though the answer is incorrect. The chapter presents this as a boundary. Entropy reflects
uncertainty about competing surface completions. It does not necessarily reflect uncertainty about
whether the internal reasoning is valid.

Calibration is assessed separately: even when entropy separates errors well, mapping entropy
to a calibrated probability of correctness can be biased. We frame this as an engineering concern.
Systems that use entropy for abstention or escalation need calibration checks, not only ranking
checks.

The chapter also reports negative findings. Model-as-judge scores, in the tested form, do not
serve as robust correctness predictors. This reinforces this work’s methodological stance. Plausible
uncertainty proxies must be validated for the target regime and the target decision. They cannot be
adopted because they sound aligned with intuition.

This chapter motivates later chapters. If answer-time entropy is not reliable for reasoning-heavy
questions, then it becomes necessary to either improve reasoning traces or to build new signals that
evaluate reasoning quality. That is precisely what the compute-aware chapters explore, by treating
reasoning as an allocatable resource and by separating thinking from answering.

Chapter 4: Complexity-aware fine-tuning

This chapter studies domain adaptation under explicit compute budgets. It focuses on compact
LLMs, where supervised fine-tuning is feasible, but large-scale distillation is still expensive because
it requires long teacher generations and substantially increases the number of training tokens. The
core question is therefore not only how to improve accuracy, but how to do so while controlling the
token budget.
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Figure 2: Complexity-aware fine-tuning scheme for a student LLM. Step 1: estimate question com-
plexity via the student’s uncertainty, measured by single-token answer entropy under an answer-only
prompt. Step 2: apply vanilla SFT on regular-complexity data. Step 3: for hard data, elicit chain-
of-thought from a stronger teacher and attach it to the training set. Step 4: fine-tune the student on
the reasoning-enriched hard subset. The central idea is selective allocation of expensive reasoning
supervision: distillation is used only where the student is most uncertain.

The chapter proposes a selective supervision policy that uses entropy as an automatic proxy
for example difficulty. The entropy object is defined at answer time under an answer-only prompt:
the student model is asked to output only the option label (one token), and we compute the full-
vocabulary next-token entropy of that answer step,

Si=- Z po(v | prompt) log po(v | prompt).
veV
High entropy means that probability mass is spread across multiple plausible options, which em-
pirically correlates with higher error risk and indicates that richer supervision may have higher
marginal value.

Figure 2 summarizes the resulting pipeline. First, we score each training example by the stu-
dent’s single-token answer entropy (Step 1). We then split the dataset into a regular band (low-
to-moderate entropy) and a hard band (high entropy). For the regular band we apply standard su-
pervised fine-tuning (SFT), because the model already has a strong preference for one option and
additional reasoning traces are often redundant (Step 2). For the hard band we invoke a stronger
teacher model to generate a CoT trace, and we distill that reasoning into the student by fine-tuning on
reasoning-enriched examples (Steps 3—4). Operationally, the policy replaces a fragile “train-longer
/ stage-by-epoch” curriculum with a fixed, entropy-defined routing rule: the expensive reasoning
supervision is tied to difficulty signals at the example level rather than to a hand-tuned training
schedule.

The chapter validates this policy against multiple baselines: plain SFT on all data, full chain-of-
thought distillation on all data, curriculum-style SFT, and alternative allocations that apply distilla-
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tion to the wrong subsets. The reported experiments show a strong improvement in the accuracy—
token frontier. After 10 epochs in the studied setting, a Qwen 3B student reaches about 0.42 accu-
racy with about 29k processed tokens under the SFT baseline, while full distillation reaches about
0.49 with about 19.72k tokens. The entropy-gated pipeline reaches about 0.50 with about 3.99k to-
kens. For Phi-4-mini, SFT reaches about 0.55 with about 27k tokens, full distillation reaches about
0.63 with about 15.15k tokens, and the pipeline reaches about 0.60 with about 2.67k tokens. With
longer training (20 epochs), the pipeline continues improving while retaining large token savings
relative to full distillation (e.g., Qwen 3B around 0.52 at 7.98k tokens and Phi-4-mini around 0.64
at 5.35k tokens in the reported runs).

These results support the chapter’s interpretation in terms of marginal value of compute. Dis-
tillation provides the greatest benefit where the student is uncertain and likely to be wrong; where
the student is already confident, chain-of-thought supervision can spend many tokens while adding
little signal. In this chapter, entropy is therefore not used as a generic description of “uncertainty,”
but as a validated control variable for allocating expensive supervision under a measured accuracy—
compute trade-off.

Chapter 5: Better thinking or a bigger model: thinking and answering shuffles with
Qwen3 on GPQA

This chapter studies a modular inference design. Reasoning is generated by a thinker model. The
final answer is produced by an answerer model that conditions on the reasoning trace. The central
question is whether performance is determined mainly by the size of the answerer or by the quality
of the reasoning trace. A second question follows. If the thinker dominates, then strong thinking
traces could be reused and amortized across cheaper answerers.

This chapter evaluates this idea using a single model family to ensure compatibility. Five Qwen3
dense sizes are used (where B denotes billions of parameters): 0.6B, 1.7B, 4B, 8B, and 14B. The
evaluation is conducted on the GPQA-main split (448 questions). For each pairing, the thinker
generates a chain-of-thought trace. The answerer then outputs only the final choice conditioned on
that trace. All 25 pairings are evaluated. Decoding is deterministic to isolate capability and trace
effects rather than sampling variation.

The chapter records chain-level statistics. Thinking length is measured as the number of tokens
in the reasoning trace. Thinking entropy is computed as the mean next-token entropy over the
thinking segment. At each step of the trace, entropy is computed on the full distribution. These
values are then averaged along the trace. This produces a measure of how diffuse the model’s
next-step beliefs are while it is reasoning.

The results show a strong asymmetry that supports the dominance of the thinker. The best
diagonal pairing is 14B — 14B at 59.15%. A strong thinker paired with a weak answerer remains
strong. The pairing 14B — 0.6B reaches 54.24%. A weak thinker paired with a strong answerer
is poor. The pairing 0.6B — 14B reaches 20.54%. This directionality is also visible in row and
column means. Varying the thinker produces large accuracy shifts. Varying the answerer produces
smaller shifts.

The chapter provides a mechanism-level explanation rooted in autoregressive conditioning. The
answerer is not a free solver. It is conditioned on a prefix. If the prefix contains a wrong hypothesis
or a misleading chain, the answerer can be anchored to that trajectory. Long traces can also create
context competition, where relevant evidence is diluted by irrelevant intermediate text. In addition,
once a trace commits to a wrong plan, the answerer can inherit constraints that steer decoding away
from the correct option. These effects explain why weak traces can poison even strong answerers.
Strong answerers are not truth filters when forced to condition on misleading scaffolds.
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Thinking length patterns also align with the story. Average thinking length decreases dramat-
ically as thinker size increases. Reported values go from around 14566 tokens at 0.6B to around
4639 tokens at 14B. This suggests that stronger thinkers reach conclusions more efficiently and with
less wandering text. Mean thinking entropy is not monotonic across sizes, but the strongest thinker
shows relatively high mean entropy, with a reported example around 0.416 at 14B. The chapter
interprets this carefully. Higher entropy during thinking does not guarantee better reasoning. The
weakest thinker can also show relatively high entropy while performing poorly. The important
point is that successful reasoning can maintain non-degenerate uncertainty while still converging
on correct structure. Entropy must be interpreted together with outcomes and with trace quality.

The compute implication is direct. If a strong thinker dominates, then a practical system can
generate high-quality traces with a strong model, then pair them with smaller answerers for low-
latency deployment. Traces could also be cached for repeated question types or for similar prompts.
However, the chapter also shows a safety boundary. Using weak traces is harmful. Therefore, reuse
and routing policies need trace quality control. Entropy along the trace, trace length, and other
internal signals can become auditing features. We treat this as a direction for building safe modular
pipelines.

This chapter completes the work’s compute-allocation narrative. Chapter 4 allocates training-
time compute by gating expensive supervision. Chapter 5 allocates inference-time compute by
separating thinking from answering and by showing where model size matters most.
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CONCLUSION AND OUTLOOK

We reframe entropy as a rigorously defined measurement primitive rather than as an all-purpose
metaphor. We do not argue that entropy is always the right tool. It argues that entropy can be
powerful when its object is well defined, its purpose is explicit, and its usefulness is validated
against outcomes and baselines.

In finite-sample inference, we show that maximum entropy inference has sharp validity limits.
When constraints are noisy and when the true world is close to uniform, MaxEnt can inject spuri-
ous structure and increase forward KL risk. Under a clear symmetry baseline, such behavior makes
MaxEnt operationally meaningless. We also show where MaxEnt can help, especially when the
world contains aligned structure and when the constraint form matches that structure. Representa-
tion dependence emerges as a central boundary. Moment constraints encode assumptions through
the numerical map that defines them.

In representation learning, we show that NMF can be interpreted as an approximate common-
cause model of a joint distribution over pixels and images. This interpretation leads to an effective
rank criterion based on predictability and motivates stability testing as a necessary ingredient of
interpretability. The chapter uses entropy as a directional diagnostic that describes how approxi-
mate factorization can smooth image distributions and sharpen basis components. PCA provides
a principled reconstruction baseline that clarifies the trade between reconstruction optimality and
interpretability.

In LLM evaluation, we validate next-token entropy as an uncertainty signal in knowledge-
dominated regimes. We also show that entropy is weaker in reasoning-dominated regimes, where
confident wrong answers are common. This conditional validity statement matters for deployment.
It implies that entropy thresholding can work for some tasks and fail for others. It also motivates
reasoning-aware diagnostics.

In compute-aware adaptation, we demonstrate that validated entropy signals can drive resource
allocation. In fine-tuning, entropy-gated chain-of-thought distillation improves the accuracy—token
frontier. It achieves near full-distillation accuracy while using far fewer training tokens in the re-
ported experiments. In inference, thinker—answerer shuffles reveal that reasoning quality dominates
answerer size. Strong thinkers can enable small answerers. Weak thinkers can degrade strong an-
swerers. This provides a concrete blueprint for modular systems and highlights the need for trace
quality control.

Several directions follow naturally. One direction is decision-theoretic validation: instead of
using entropy only to rank examples or predict errors, future work can evaluate full policies such
as abstention, escalation, and selective computation under explicit cost models [23,24]. Another
direction is reasoning-aware uncertainty. Since answer-time entropy can fail on reasoning-heavy
questions, future work can focus on signals computed along the reasoning trajectory, including
entropy trajectories, step consistency measures, and learned detectors of trace validity [14, 28].
Related directions include learned routing (replacing fixed thresholds with policies optimized on
accuracy-latency under shift), broader generalization of the thinker—answerer results across model
families, tokenizers, and tasks, and treating representation choices as design variables across the
whole work: in MaxEnt, encodings define constraints; in NMF, normalization defines probabilistic
meaning; in LLMs, the token space and decoding rules define the entropy object.

The work’s conclusion is therefore practical. Entropy is useful when it is operational. Oper-
ational use requires a defined object, a stated purpose, and empirical validation against a baseline
that represents minimal structure. Under that discipline, entropy becomes a tool for inference, for
representation selection, and for compute-aware reliability in modern Al systems.
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Xanacpan dpsapn ApceHoBuY

AutponumiiHo-ynpaenaemblii UN: BepoATHOCTHbIIT nH(pepeHc,
NpUMYMHHbIE NPeACTaBleHNs N aganTuBHoe Ao0obyyeHne mogenei

Pe3iome
3HTpOFIVIF| ABNAETCA LI,eHTpaﬂbHOVI BeI'IVILIVIHOVI B CTaTUCTUKE, MalUMHHOM O6y‘-IeHV|VI
n COBpeMeHHbIX 6OJ'IbLUVIX A3bIKOBbIX MoOJenNnAx. OHa CBA3bIBaeT KO,D,MpOBaHI/Ie

U cxatve wvHdopmauun, (UsMYeckue MpeacTaBieHUA O  HeYNopALOYEHHOCTU U
chopmanuzaumio HeONpeaeneHHoOCTU NpU OrpaHNYeHHOM 3HaHuK. B npuknapgHbIx 3apadax
€e 4acTO MCMonb3yloT ANA BOCCTAHOBNEHUA pacrpefeneHnii n Kak curHan ynpasneHus
npeAcKkasatenbHOl yBepeHHOCTblo.  [lpy 3TOM 3HTPOMUIO HEPERKO MPUMEHAIOT Kak
YHUBEpCaNbHYIO BENeUYUHY, He MPOBEPAA KOPPEKTHOCTb, HEOOXOAMMOCTb W YCTOMYMBOCTb
TaKoro NPUMEHeHNA NPy CMeHe AaHHbIX UN YCNoBKiA 0bydeHuA.

B at0ii pabote npepnaraetcA nogxon K - 3HTponwuiiHo-ynpasnAemomy UMW,
OPUEHTVPOBaHHbI Ha BanMAHOCTb. Mbl paccmaTprBaeM SHTPONUIO Kak ornepauoHanbHYyo
BENIMYMHY TONbKO MOC/Ee TOro, Kak NMpoBepuM, YTO ee NpUMeHeHVe BeliCTBUTENbHO Moe3HO
Ana BblbpaHHOro obbekTa M B pamkax noctaBneHHoi 3apaun. Obbektom MoxeT 6biTb
pacripefeneHve BepOATHOCTEN WM "yBEpPEeHHOCTb"' reHepauuu CRedylroLLero TOKeHa B
A3bIKOBOI Mojenu. 3ajayva MOMET BKMHOYaTb BOCCTaHOBNEHME, BbIGOP MOLENU, OLEHKY
HafeXHOCTU UMK yrpaBneHue BblYMCIUTENbHbIMM 3aTpaTtamu. [lanee mbl Banuampyem
BbIOpaHHbIli BapuaHT MpuUMeHeHWA Mo HabnofaembiM METPUKaM, TakUM Kak TOYHOCTb,
YCTOMYMBOCTb W BbluUCAUTENbHAA 3PEKTUBHOCTD.

B 3apavax cratucTUyeckoro BbIBOJA Mbl M3yyaeM MPUHLMM MaKCUMabHON SHTPOMUM
npv orpaHUyeHnAX, oLleHMBaeMbIX Mo AaHHbIM. Mbl MpoBepaem, Koraa oH MHOpMaTHBEH
B KOHeYHbIX BblOOpKax, yCpefHAA KayecTBO MO MHOMECTBY MOPOMAAIOLLMUX pacnpepeneHuii
U MHOMECTBY BbIDOPOK. DTO MO3BONAET BbIAENUTb PEXUMbI, FAe MaKCUMaNbHaA SHTPOMMUA
yAyyLlaeT OMMAaEMOe KayeCTBO PelleHWil, U pemuMbl, rae oHa BHOCUT HeobOCHOBaHHYHO
CTPYKTYPHOCTb.  [paHuLbl NPUMEHMMOCTU OMpPEeAenAOTCA 0ObEMOM JAaHHbIX, BblbopoM
orpaHuYeHui 1 BbIbpaHHbIM NpeacTaBNeHNEM.

B Knaccuyeckom MalUMHHOM OOyyeHUM Mbl (POKYCHPYEMCA Ha HeOoTpuLaTeNbHOM
MaTpuyHoW pakTopu3auMM Kak Ha MeTofe NpeacTaBneHnii C  BEPOATHOCTHON U
NPUYUHHOW  MHTEpRpeTaLueil. WHTepnpetauma yepe3 npuHUuMn obLieil npuyuHbl
OaeT npakTM4yecKoe npasBwio Bblbopa paHra W MNopjepvBaeT aHanu3 yCTONYMBOCTU
K cnabomy LWymMy M K pasaMyHbIM MHULWaNM3auuaMm. DHTponuA  uUcnonb3yeTca
Kak HanpaBfeHHbli [MarHOCTUYECKWIA MpuU3HaK Toro, Kak pakTopusauma U3MeHAeT
pacnpefenuTenbHylo CTPYKTYpY W pa3pemeHHOCTb NpefcTaBieHuii. DT adbdpeKkTbl
MPOBEPAIOTCA IKCNEPUMEHTANBHO, @ HE BBOLAATCA KaK 3BPUCTHKA.

B 6onblumx A3bIKOBbIX MOAENAX YacTO BbIYUCAAETCA SHTPONWUA pacnpefeneHuto
BEPOATHOCTEell ClieAytoLLlero TokeHa reHepauun. Mbl nposepaem, Korpa SHTponuA Ha
YPOBHE TOKEHOB MpefcKasblBaeT OLWMOKM U Korpa OHa nepecTaeT ObiTb HafEKHbIM
uHgukatopom. OHa monesHa B pexuMax JOMUHWPOBAHUA 3HaHWA M MeHee HafemHa
B peMuMax [OMWUHMPOBAHWA MHOIOLLArOBOrO PacCy#JeHWA, TAe BO3MOMHbI yBEpeHHble
ownbkn. To TpebyeT PEMUMHO-3aBUCUMON OLEHKN HEOMpPEAEneHHoCTU M aHanusa no
cermeHTaMm reHepaLuu.

[lanee mMbl ucrnonbsyem BanMAMPOBaHHbIE SHTPOMUIHbIE CUrHaNbI ANA pacrnpeaeneHus
BbluncneHnit. [Mpu obyyeHUM oLeHKa CMOMHOCTM Ha OCHOBE SHTPOMUM MapLUpyTU3MpyeT
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AaHHblE TaK, YTO [OPOroe obyyeHUe Ha PacCymAeHUAX MPUMEHAETCA TONbKO TaM, e OHa
OaeT BbIUrpPbILL.

Mpw nHpepeHce bonbLUKX A3bIKOBLIX MOAENE Mbl paccMaTpUBaeM JEKOMMO3ULMIO Ha
MbICAIUTENA U OTBETYMKA, FAe MbICIUTENb FeHepupyeT pacCyfaeHune, a OTBETYMK BblaaeT
MeTKy oTBeTa. Pe3ynbraTbl MoKasbiBatoT, YTO CUIbHbIE PACCY¥AEHWNA XOPOLLIO NepeHoCATCA
MEM[y OTBETYMKaMM, TOrfa Kak cnabble pacCyMfeHua MOryT yXyAluaTb KayecTBO fame
KPyMnHbIX OTBETUYMKOB. CTaTUCTMKM 3HTPOMMM M [IMHBI MOMOratoT OT/INYaThb MosnesHble
paccysjeHus oT BBOLALLMX B 3abnyxaeHue.

Bo Bcex paccMOTpeHHbIX [OMeHax 3HTPOMUA CTAHOBUTCA WHPOPMATUBHOW TONbKO
6yayuun npuBAsaHHoOl K ABHO 3aaHHOMY 0ObeKTy 1 3afa4n. Mbl paccmaTpuBaem sHTPOMMIO
He KaK yHMBepcaslbHblii MPOKCK-NOKasaTelb, a Kak W3MEPUMbIi CUrHan, CBA3aHHbIA C
KayecTBOM Ha 3ajaye U y4eTOM PecypcoB.



