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Description of the Work

Topic Relevance and Problem Definition: Modern workflow applications,
ranging from web services and content delivery networks to data-processing
pipelines and loT systems, often involve multiple distributed components that
must exchange and store large volumes of data. In such systems, the transfer
of data between components can become a major performance bottleneck.
Every extra hop over the network or to an external storage service adds
latency and consumes bandwidth. This thesis explores techniques to minimize
unnecessary data movement by adopting a strategy of lazy data transfers,
where data is only moved or copied when absolutely necessary. Keeping data
closer to its point of use (for example, caching results within the workflow or
embedding information in existing messages), reduces overhead and
improves responsiveness. Recent advances in system design, such as
embedding key-value stores directly into application components and using
in-band telemetry with eBPF (extended Berkeley Packet Filter), suggest that
it is now feasible to rethink how data is handled in workflows. The following
sections provide background and context for this research, outline the
motivation and problem statement, and summarize the goals, contributions,
and structure of the thesis.

Efficient data handling is both a practical necessity and a scientific challenge
in today’s computing environments. Workflow applications are growing in
scale and complexity, processing ever-larger data sets and serving ever-
higher request volumes. Even modest inefficiencies in how data is transferred
or stored can translate into significant slowdowns or resource wastage at
scale. From a scientific standpoint, the topic of lazy data transfers addresses
a clear gap in current systems design: while there have been many
advancements in high-performance computing and networking, we lack
integrated solutions that minimize data movement and maintain performance
transparency. For example, as noted earlier, modern load balancers have not
yet incorporated durable in-process storage. They either use in-memory
caches that vanish on reboot or rely on external caches. This gap means
current systems often spend time and network bandwidth repeatedly fetching
or reconstructing data after failures or across components. Embedding a KV
store within the load balancer and similar components directly addresses this
gap, enabling the system to persist and reuse data locally. Scientifically,



exploring this uncharted design space yields new insights into how caching,
persistence, and application logic can be co-designed for better fault tolerance
and speed.

Another motivation comes from the observability gap in performance tuning.
As embedded databases and in-network processing become more common,
it is increasingly important to understand their internal behavior. Traditional
metrics (throughput, average latency) are not sufficient to identify performance
anomalies like tail-latency spikes caused by background tasks (e.g.
compaction in a KV store). This thesis is relevant to the research community
because it demonstrates an approach to close this gap using eBPF. By turning
benchmarks into tools that reveal internal operation costs, researchers and
engineers can pinpoint exactly why a given system slows down under certain
conditions. This kind of visibility is crucial right now. As systems scale, simply
knowing that something is slow is not enough; it's important to understand the
cause in order to optimize. The timing is important because eBPF technology
has matured in recent years and is now stable in mainstream Linux kernels,
making it a practical tool for systems research and development. The
combination of modern high-performance NVMe storage, advanced KV
engines, and eBPF instrumentation creates an opportunity today to solve
problems that were previously very hard to tackle. Ten years ago, embedding
a high-throughput, persistent KV store in a latency-critical path might have
been impractical, but now it is within reach.

Thesis Aim and Problem Statement: Despite the advancements in
distributed systems and data management, current workflow applications still
suffer from excessive and inefficient data transfers. The core problem
addressed in this thesis is that critical components in a workflow (such as load
balancers, caches, or pipeline stages) often handle data in a way that causes
unnecessary movement of information and lack of persistent state, leading to
avoidable latency, bandwidth usage, and complexity. For example, a load
balancer without local persistent storage must fetch cached content from an
external store on every cache miss or after every restart, and a monitoring
system that polls servers for metrics adds extra network traffic. Additionally,
the lack of internal visibility in these components makes it hard to pinpoint
performance bottlenecks or optimize data handling strategies. The research
question can be summarized as: How can workflow application architectures
be designed and implemented to minimize unnecessary data transfers while
preserving or improving performance and reliability? The problem divides into



four parts: embedding a durable KV store in latency-critical services without
adding bottlenecks; extracting fine-grained performance data from these
stores; steering traffic in real time with minimal overhead; and uniting layer-7
features, such as caching, with layer-4 network optimizations.

Thesis Scientific Contribution: The goal of this thesis is to improve the
efficiency and performance of data-intensive workflows by reducing
unnecessary data movement and enhancing system introspection. In pursuit
of this goal, the thesis makes several original contributions in the areas of
embedded storage design, performance benchmarking, and load balancing
mechanisms:

e Embedded KV-Store in Workflow Components: A novel approach to
caching and state management is designed and implemented by
embedding a full-featured key-value store inside a Layer-7 load
balancer. This contribution demonstrates that it is feasible to integrate
engines like RocksDB or LMDB directly into a high-speed request
handling path. This embedded cache achieves significantly higher
throughput compared to traditional file-based or in-memory caches,
while also providing durability (state persistence across restarts) and fast
fail-over recovery. This result indicates that workflow components can be
made more self-sufficient, caching data lazily on-site and thus avoiding
constant external data transfers.

e eBPF-Based Benchmarking and Observability: A benchmarking
methodology enhanced with eBPF tracing (the UCSB-eBPF framework)
is developed to analyze the internal behavior of embedded key-value
stores under realistic workloads. This contribution provides a tool and
approach that go beyond reporting aggregate performance; it can
capture where time is spent inside the system with microsecond
resolution. The methodology adds minimal overhead (under 1% runtime
cost), making it practical to use in evaluating real systems. Applying this
tool uncovers causes of latency spikes (such as compaction or I/O stalls)
that were previously invisible in black-box benchmarks. This contribution
is both a methodological advance for research and a practical aid for
engineers to tune systems, essentially turning performance evaluation
into a fine-grained diagnostic process.

e Dynamic Load Balancing with In-Band Feedback: This work introduces
a dynamic load balancing mechanism for Direct Server Return networks



that utilizes in-band metric feedback via eBPF. Specifically, the solution
encodes server load indicators within regular response packets (using
an |P option) and leverages eBPF at the load balancer to extract this
information on the fly lazily. This eliminates the need for separate
monitoring messages or polling, thereby exemplifying the lazy transfer
principle at the network control level. The contribution includes a Linux-
based prototype and a demonstration that this approach can improve
request handling capacity by up to 47% compared to a conventional
approach with explicit polling lazily. Importantly, it achieves this without
requiring any modifications to client or server application code, showing
that the technique can be deployed incrementally in real systems. This
work contributes a new practical method for load balancing that is highly
responsive and efficient, adapting to workload changes in real time while
minimizing overhead.

e Layer-7 DSR Handoff with Minimal Proxying: The load balancer stays in
the path only long enough to inspect the request, selects a server, then
transfers the connection, so data flows directly to that server. Lightweight
metadata keep sessions coherent, and the system falls back to normal
proxying if the transfer fails. This preserves Layer-7 insights for policy
while removing the balancer from steady-state traffic and cutting latency.

Overall, these contributions address the thesis goals by providing both new
system designs (embedded caching in L7 balancers, in-band feedback for
load distribution) and new analytical tools (eBPF-augmented benchmarking)
to support those designs. The results include not only performance
improvements in prototypes, but also insights and techniques that can be
applied to a variety of workflow application scenarios. All software developed
(from the modified benchmarks to the load balancer prototype) has been
made available as open-source, amplifying the potential impact of this work
by allowing others to build on it.

Practical Importance: From a practical perspective, solving the problem of
excessive data transfers stands to benefit a wide range of real-world
applications. Consider large web server farms or cloud services that serve
millions of users: a load balancer that can cache content internally and
intelligently distribute load can reduce both latency and real service load,
leading to faster response times for users and lower infrastructure costs. In
such a scenario, if the load balancer crashes or restarts, an embedded



persistent cache can allow it to pick up where it left off, instead of starting cold
and overwhelming real services, improving reliability and fault recovery.
Another example is edge computing and loT gateways, where bandwidth to
the cloud may be limited: by keeping data (sensor readings, intermediate
analytics results) locally as long as possible and only sending summarized or
necessary data to the cloud, one can operate efficiently under bandwidth
constraints. The techniques in this thesis, like in-situ caching and in-band
metric feedback, are directly applicable to these cases. The DSR load
balancing approach with in-band feedback is immediately relevant to high-
traffic websites and CDNs, where bypassing the load balancer for responses
(DSR) and cutting out separate monitoring traffic can significantly increase
throughput lazily. Achieving a 47% increase in requests per second in a
prototype scenario indicates substantial practical gains lazily. This is
especially important now as services continue to demand higher performance
and lower latency. Users expect real-time responsiveness, and back-end
systems are becoming more heterogeneous (mixing general-purpose servers,
GPUs, etc.) which leads to variable load conditions lazily. Traditional static
load balancing or naive data shuffling cannot cope optimally with such
variability. Thus, it is both timely and important to develop smarter, lazy data
transfer mechanisms that react to real-time conditions with minimal overhead.

While Layer-4 DSR lets real services bypass the load balancer once selected,
modern load balancers are also expected to perform Layer-7 tasks, parsing
HTTP headers, applying security rules, logging user context, and steering
requests based on content. The challenge is to keep that rich Layer-7
metadata accessible to the LB long enough for these features, then shift the
data path to the server without adding a permanent proxy hop or breaking the
client connection.

In summary, the relevance of this research is highlighted by a convergence of
factors: a recognized gap in how current systems handle state and
performance insight, the availability of new tools and technologies to fill that
gap, and a pressing practical need to improve efficiency in the face of growing
data and performance demands. By addressing lazy data transfers in
workflow applications, this thesis contributes to making distributed systems
more scalable, efficient, and robust, which is of high importance both to the
academic community and industry practitioners.



Publications List: There are already four published journal articles, and three
more articles are currently under review, one of which is being considered by
a Scopus-indexed journal.

Thesis Structure

The second chapter surveys the existing literature and technologies relevant
to lazy data transfers, including caching strategies in load balancers, key-
value store architectures, performance benchmarking tools, dynamic load
balancing techniques, and the use of eBPF in systems. It provides context and
distinguishes this approach from prior work.

Subsection 2.1: Explains embedded key-value stores are small database
libraries linked directly into the application, turning data look-ups into local
function calls instead of network trips. They're ideal for latency-sensitive
services, mobile or edge devices, and single-node systems that need fast
reads and writes

Subsection 2.2: A detailed description of benchmarking methods is provided,
including their evolution from YCSB to modern tools. Engine-specific micro-
benchmarks complement general suites but, yet their instrumentation rarely
extends beyond throughput and latency counters. eBPF has emerged as a
lightweight alternative: vetted probe programs can time system calls, user-
space functions and scheduler events with less than 1 % overhead.

Subsection 2.3: Explanation of load balancer role in distributing traffic and
improving scalability and fault tolerance is described.

The third chapter details the UCSB-eBPF benchmarking extension, including
instrumentation points, data collection and analysis methods, and validation
of tracer overhead. The chapter then uses this enhanced benchmark to profile
multiple KV store engines in various scenarios, illustrating the kind of insights
gained (for instance, identifying which internal operations are limiting
throughput in each configuration).

Subsection 3.1: This section describes the benchmark design to evaluate
the embedded KV store approach, a prototype L7 load balancer with caching
was benchmarked under realistic web workloads. The study tests different
caching configurations (file-per-key, embedded KV stores, and in-memory)
with varying read-to-write ratios.



Subsection 3.2: During the benchmarks, standard and scenario-specific
metrics are collected, including throughput (operations per second), memory
usage, and CPU usage. The results show that while the in-memory hash map
delivers the highest throughput, it lacks durability and uses significantly more
RAM. LevelDB consistently showed the lowest throughput and highest CPU
and memory usage across most workloads, except in single-threaded read-
only and read-heavy scenarios. Where memory pressure is modest, LMDB
emerges as the top performer among KV stores, matching or exceeding
RocksDB’s throughput while maintaining a moderate CPU profile. Thus,
practitioners can opt for an in-memory hash map for speed, LMDB or
RocksDB for a balance of reliability and throughput, or a file-per-key model
when memory usage is critical.

Subsection 3.3: This section concludes that embedding modern KV stores in
L7 load balancers is beneficial. These stores improve cache durability and
eliminates cold-start latency at only modest CPU cost, yielding a favorable
performance-reliability trade-off. What was once dismissed as too heavy for
the data plane is now a feasible path to faster fail-over and simpler stacks,
and thus merits re-evaluation in every modern Layer-7 load balancer.

The fourth chapter presents the design and implementation of the embedded
key-value store within a load balancer. It describes the integration of the KV
engine, the modifications to the load balancer’s workflow, and mechanisms for
ensuring durability and efficiency are described. Challenges, such as
managing additional CPU and I/O overhead, are also discussed, along with
the solutions adopted to address them.

Subsection 4.1: This section explains how the benchmark is set up by
combining UCSB (Unbranded Cloud Serving Benchmark) with eBPF tracing
to analyze embedded key-value stores. The benchmark is executed twice for
each database workload combination: first, a timing pass with minimal eBPF
overhead to measure syscalls and latency, then a memory pass to gather
allocation metrics. Probes are grouped into phase markers (for workload
alignment), syscall tracing (for latency breakdowns), and memory telemetry
(for allocation analysis). A helper thread collects snapshots every 15 seconds.

Subsection 4.2: This section presents performance results for four key-value
stores across seven workloads (e.g., write-only, read-heavy, range scans).
System calls were breaked down into categories (I/O, synchronization,



memory ops). This helps make decisions without benchmarking on specific
hardware. WiredTiger and RocksDB use heavy read system calls, therefore
their performance is highly correlated with fast file systems, specifically fast
reading hardware. LevelDB executes mainly in user space; its performance is
therefore CPU-bound rather than I/O-bound.

Subsection 4.3: The chapter concludes by summarizing ucsb-ebpf, a low-
overhead (<1%) eBPF extension for UCSB that transforms benchmarks into
diagnostic tools. All code and analysis scripts are open-sourced. The chapter
shows how eBPF can turn black-box benchmarking into a causal performance
analysis for embedded databases.

The fifth chapter describes the dynamic load balancing solution using in-band
load metrics. It covers the design of the eBPF programs and IP-option
mechanism for embedding metrics, as well as the algorithm the load balancer
uses to redistribute traffic based on the feedback. Experimental evaluations
compare this approach with traditional load balancing, demonstrating
performance improvements and discussing scenarios where it is most
beneficial.

Subsection 5.1: This subsection describes the proposed dynamic load-
balancing architecture that enhances DSR (Direct Server Return) with real-
time, in-band metric feedback using eBPF. It introduces a Layer 3 extension
to DSR that manages routing decisions directly at the network level, allowing
for efficient traffic handling without of large-scale traffic without requiring
changes to application-layer protocols or server configurations. The method
embeds busyness scores directly in the return packets from real servers,
avoiding the need for extra out-of-band polling or separate control messages.
The load balancer encodes the client’s IP and port in the packet header using
custom IPv4 options or IPv6 extension headers and, based on locally
maintained busyness scores, routes requests to the most suitable server. The
system operates in four stages: client tuple encoding, real service selection,
metric triggering, and feedback propagation. The implementation uses two
packet flows, illustrated in Fig. 1, Flow 1 enables standard DSR, where the
load balancer forwards requests with embedded client info, and servers reply
directly. Flow 2 incorporates dynamic feedback, the LB periodically requests
server load metrics, which are piggybacked on return packets routed back
through the LB for processing. For clarity, the diagram shows Flow 1 on RS 1
and Flow 2 on RS 2, but in practice, both flows apply to any server.
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Fig. 1. Packet flow in the implementation.

By leveraging eBPF, the solution avoids modifying application logic while
enabling dynamic load balancing without additional network overhead.
Although it introduces overhead by adding custom IP options, it avoids
additional packets. This approach is particularly suitable for dynamic, bursty
workloads.

Subsection 5.2: This subsection presents benchmark results comparing four
load balancing configurations: Pass Through (baseline), DSR Round-Robin,
DSR with explicit busyness queries, and the proposed Dynamic DSR. All
experiments were conducted using the Armenian national cloud infrastructure
resource. Dynamic DSR improves average response time by 3.2 times over
the baseline (Pass Through) and 20% over DSR with explicit busyness
queries. It also achieves a 47% increase in RPS compared to explicit polling.
While RPS significantly improves, latency percentiles (90th-99th) remain
within a 5% margin between dynamic DSR and DSR with busyness requests.
As shown in Figure 2, both DSR variants maintain at least 1.5% higher and



more stable RPS than the baseline. The proposed method combines these
gains to deliver a 2.8x overall improvement.
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Fig. 2. Request-rate trace (10 min) for baseline and three DSR variants.

Subsection 5.3: The conclusion summarizes the benefits of the feedback-
driven DSR approach, which improves scalability for unpredictable workloads.
Key achievements include a 47% throughput gain and sub-100us latency for
load-aware routing. Future directions include IPv6/QUIC implementation,
middlebox resilience studies, Layer-7 integration, and adaptive feedback
tuning.

The sixth chapter introduces TCPE, a streamlined alternative to Multipath TCP
designed for dynamic path switching and load-balancer integration. The
chapter details TCPE’s design and implementation, highlighting its
advantages over MPTCP.

Subsection 6.1: The subsection explains why TCPE (TCP Extension) was
developed as a lightweight alternative to MPTCP. While MPTCP allows a
single TCP connection to use multiple paths simultaneously, it introduces
complexity with cryptographic handshakes, subflow management, and
middlebox compatibility issues. TCPE simplifies this by using a Connection ID



to group related flows, communicated via an experimental TCP option. This
approach avoids MPTCP’s kernel dependencies. The design prioritizes low
overhead, minimal latency, explicit routing control, and seamless Layer-7 load
balancer handoffs.

A primary design goal of TCPE is to enable on-the-fly TCP handoff from a
Layer-7 load balancer (LB) to a backend server after the LB has inspected the
application layer data. After completing the initial TCP handshake, the load
balancer uses the Connection ID to coordinate handoff to the chosen backend.
Because the Connection ID is carried in clear in a TCP option, the backend
and client can recognize each other. Unlike TCPLS (which tightly integrates
TLS encryption with multipath capabilities and hide such identifiers inside the
encrypted channel), TCPE deliberately keeps its session metadata
unencrypted to simplify coordination, the load balancer can see and use the
Connection ID for routing, and network elements don’t need to be aware of
TLS keys or perform deep packet inspection.

TCPE is designed to gracefully fall back to standard proxying if handoff fails.
The LB continues forwarding traffic at Layer 7, ensuring no connection
disruption. This fail-safe approach ensures TCPE can be used in
heterogeneous networks without risking connectivity. From the client's
perspective, even if handoff fails, the worst-case outcome is a slight
performance reduction (staying on the proxied path) rather than a broken
connection.

TCPE’s design rationale is to achieve some of the benefits of MPTCP in a
more deployable way, specifically tailored for scenarios like layer-7 load
balancing. By using a lightweight, connection identifier and deferring multipath
setup until after payload inspection, it combines the intelligence of application-
layer routing with the performance of direct connections. When successful,
TCPE vyields nearly the same efficiency as a direct client-to-server TCP
connection (after handoff, the LB is out of the data path), with only a minor
initial coordination overhead. And if conditions aren’t right, it gracefully falls
back to standard behavior, ensuring compatibility and reliability.

Subsection 6.2: This section outlines the implementation of TCPE using
Linux's eBPF capabilities, which allows attaching small programs to various
kernel hook points at runtime. This program can intercept TCP lifecycle events



(e.g. socket creation, connection establishment, state changes) and can also
inject or parse TCP header options via special helpers.

It describes how TCPE groups TCP flows using a consistent Connection ID
stored in a TCP header options. An eBPF sockops program selects a key
Connection ID, oritis set from userspace. Notifications are sent via pure ACKs
to avoid disrupting sequence numbers. The receiver updates its path
mappings, enabling dynamic multipath management. After selecting the real
server, the LB signals the server to take over. The backend can then take over
the session, while the LB sends add-path for server’s path, and remove-path
for load balancer’s path notifications to the client to switch paths. If the client
migrates successfully, all subflows related to LB should be closed, and future
communication uses the new path while maintaining the same Connection ID.
The server processes requests and sends responses through available
subflows, falling back to standard L7 load balancing if no subflows exist, while
TCPE dynamically manages multiple paths through runtime additions,
removals, and eBPF-monitored socket updates.

eBPF tracks connection termination (TCP_FIN/TCP_RST) and cleans up
stale mappings. Additionally, the implementation uses printk logging in BPF
(bpf_print) for debugging, which shows state changes. This helped verify that
the logic is working, and in a production setting could be replaced by ring-
buffer events to user-space if detailed tracing is needed.

While eBPF does the heavy lifting in the kernel like ID assignment and socket
redirection, there is a user-space component that orchestrates the overall
process. This user-space is essentially the TCPE-enabled load balancer and
TCPE-aware client library. The load balancer directs traffic based on initial
data and communicates with the chosen server, which runs a TCPE server
component with its own eBPF setup. The server listens for client connections
or instructions from the load balancer to manage traffic efficiently.

If anything in the handoff process fails, TCPE’s implementation allows the LB
to seamlessly continue as a proxy. A timeout or lack of response will be
detected, and the LB can decide to keep handling the traffic itself. Fallback
thus ensures that TCPE’s enhancements never reduce reliability, they only
improve performance when they succeed.



The TCPE prototype has several limitations, including the lack of automatic
MTU/MSS negotiation per path, state loss and fault tolerance, no in-band
security or authentication of subflows, limited multipath scheduling logic. The
TCPE prototype demonstrates that Linux kernel features like eBPF can extend
TCP, such that they can be used for socket migration and multipath routing
without kernel modifications. By combining kernel-level packet processing
with user-space control, TCPE offers a flexible, middlebox friendly alternative
to new transports like QUIC, with potential for further enhancements in
multipath scheduling and fault tolerance.
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Uhwpdwdwlwly owwhdhqugutind pwiwlubpp wywunwufuwlh
Swuwwwnphhg, npp Ujwqgbgunud E thwpbeh thnfuwlugdwl Jpw
Swiuuynn dwdwlwyp:

ONTUMU3ALMA NEPEOAYN OAHHBLIX B PACMPEOENEHHbIX
CUCTEMAX

AGcTpakT

B naHHol paboTe nccnegyotcs MeTOAbI NOBbILLEHWS 3MEKTUBHOCTH
nepefayvn AaHHbIX B COBPEMEHHbIX pacnpeaenéHHbiX cucTeMax.
CoBpeMeHHble NnaTtopMbl 06paboTkM JAHHBLIX YaCcTO BKIHOYAKT HECKOMBKO
pacnpenenéHHbIX KOMNOHEHTOB, KOTOPblE OOMEHMBAKOTCS U XPaHAT
fonblune 06bEMBI AaHHbLIX. XpaHEeHNe AaHHbIX Onuke K Touke
NCMNONb30BaHUS CHWXKAET 3aTpaThl U yry4dllaeT OT3bIBYMBOCTL. B nocnegHee
BpEMsi HOBOBBEAEHMUSI B 06NacTu NPOEKTUPOBAHUS CUCTEM, TaKUE KaK
BHeapeHue KV-xpaHunuiy (Knoy-3HayeHre) 1 MCNofb30BaHNE BCTPOEHHbIX
namepeHuin eBPF, no3eonsitoT nepecMoTpeTb Noaxoabl k pabote ¢ gaHHbIMU
B pacnpeaenéHHbIX cuctemax.

Llenb u paccmatpuBaeMsbie 3agaumn: dddekTnBHas o6paboTka AaHHbIX
CerogHsi ABNSAETCS Kak NPakTU4YecKon HeOBXOAUMOCTbIO, TaK U BbI30OBOM.
PacnpenenéHHble cucteMbl pacTyT B 06bEME 1 CNOXHOCTU, 06pabaTbiBas
BCE Oonblune 00bEMBI AaHHBIX U 06cnyxmBas Gonblue 3anpocoB. OcHoBHas
uenb JaHHOW AuccepTaumm - NOBbILIEHNE NPOU3BOAUTENBHOCTU U
addekTnBHOCTM paboThl ¢ AaHHbIMU. PaccmaTtpuBaeTcs 3ajava
NPOEKTUPOBAHNSA 1 peann3auumn pacnpeaenéHHbiX CUCTEM, NMO3BOSSIOLLIMX
COKpaTUTb U30bITOYHYH Nepeaavy AaHHbIX, OGHOBPEMEHHO COXpaHSs UNn
NOBbILLAsA NPOM3BOANTENBHOCTb U HAAEXHOCTb. OCHOBHbIE 3aga4n
BKITHOYAIOT:

[ BHegpeHue KV-xpaHunuiy B KOMNOHEHTbI CUCTEM 1151 3HAYUTENBHOIro
NOBbILLEHNSA NPONYCKHOMN CnocobHOCTN, a Takke npegocrtaesnaeTt
6bICTp06 BOCCTaHOBNeHMe npu cbosix

[ CospgaHue MHCTPYMEHTa And getanbHOro MOHUTOPUHIa
NPOU3BOANTENBHOCTU C UCMONb30BaHNEM TexHonornn eBPF



e PaspaboTtka MexaHn3m guHaMuyeckon 6anaHCUPOBKM Harpy3ku Ans
ceteni ¢ Direct Server Return (DSR), o6ecneunBatoLmii BbICOKYH
3 PeKTNBHOCTb U aganTaumio K usmeHeHUsim paboyero noToka.

e Paspabotka mexaHuama DSR c HyneBbIM BpEMEHEM MPOCTOS,
no3BonsoLLero covyetarb ckopocTb DSR ¢ 0cO6eHHOCTAMM NPOKCHK,
TaKMMM Kak KallmpoBaHue 1 npoBepkn 6eaonacHocTy.

OCHOBHbIe pe3ynbTaThl paboThbi:

Pe3yanaTb| anccepTtaunn BKMKOYaT HECKOJIbKO MHHOBALIMOHHbIX pemeHvuZ
B crnefyrwunx HanpaBrieHnAax:

e PaspaboTtaH 1 peanu3oBaH HOBbIV NOAXOA K MHTErPUPOBaHHOMY
K3LLUMPOBAHMIO C UCMONb30BaHUEM BCTPOEHHbIX KV-xpaHunuy,
(ranpumep, RocksDB unu LMDB) B koMNOHeHTax cuctemM. 310
NO3BOMSIET XPaHUTb AaHHbIE Brinke K MECTY UCMONb30BaHUS,
obGecneunBasi 3HauUnTENBHO Gonee BbICOKYH MPOMYCKHYH CMOCOBHOCTL
Mo CpaBHEHUIO C TPAAMUMOHHLIMU (danoBLIMU UMW ONepPaTUBHbLIMU
XpaHWUmMLLIaMK, a TaKkke YCKOPAA BOCCTaHOBMEHMe npu cbosx.

e Co3aaH MHCTPYMeHT ansa 6eHYMapkuHra Ha ocHose eBPF,
NO3BOMSIOLLMIA BbIABMATb NPUYMHbBI NOTEPb NPOM3BOAMTENBHOCTM B KV-
XpaHunuwax. MIHCTpyMeHT No3BONSeT aHanmanpoBaThb, I4e U CKOMNbKO
BPEeMeHM TpaTuTCs B cucteme, o6aBnNAs MUHUMATbHYHO
[OMOMNHUTENBHYO Harpy3ky (He 6onee 1% BpemeHn).

e PaspaboTaH HOBbIi MEXaHN3M AUHAMWUYECKOW GanaHCUPOBKM Harpy3ku
ana ceten ¢ Direct Server Return (DSR). Ota TexHonorusi nepegaét
UHdOpMaLuMIo 0 3arpy3ke cepBepoB B IP-3aronoBkax nakeTos, 4YTo
no3sonsieT 4OOUTLCS! NOBLILEHUS NPOU3BOANUTENBHOCTU 40 47 %.

e [IpeanoxeHo HOBOE MHOrOMyTEBOE paclunpeHue ans nportokona TCP,
no3sonsitoLLiee peanu3oBaTb nepegadvy coeanHerus L7 DSR 6e3
BpeMeHU nNpocTos. banaHcMpoBLLUK OCTaéTcst B COEANHEHUN POBHO
HacTombKO, YTOObI, YTOOLI NPpoaHaNM3MpoBaTh KOMaHAy U BelbpaTb
cepBep, Nnocre 4ero nepefaéT coegnHeHne cepeepy. HebonbLuon
06BEM A0ONONMHUTENBHON MHEOPMAaLIMN MOMOraeT COXpaHUTb
COrnacoBaHHOCTb COEAMHEHMS], a cUCTEMa BO3BpaLLAeTCs K 0ObIMHOMY
NPOKCU-COeaMHEHNIO B cryyae cbos nepegayqn. 3To coxpaHaeT
PYHKLMOHANbHOCTb YPOBHS L7, 0AHOBPEMEHHO ONTUMU3MPYSI NYTb
oTBeTa GanaHcUpOoBLLUKa, YTO COKpaLLaeT BpeMs nepefaym nakeTos.
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