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General Description of the Work

Relevance of the Research

The rapid adoption of solar photovoltaic (PV) technology as a cornerstone of the
global renewable energy transition has introduced technical challenges in ensuring long-
term reliability and efficiency. Defects such as micro-cracks, interconnect corrosion,
and thermal hotspots can significantly reduce energy yield, making early detection im-
perative. Thermal imaging has emerged as a vital diagnostic tool due to its ability to
detect infrared radiation indicative of such faults. However, the inherent limitations
of thermal imagery, low contrast, limited resolution, and high noise sensitivity, pose
significant barriers to robust automated analysis.

This dissertation is driven by the need for data-efficient, computationally
lightweight, and thermally adapted image processing techniques for defect detection in
PV systems. Manual inspection is impractical at scale, and conventional methods de-
veloped for visible-spectrum images are often inadequate for thermal modalities. The
proposed research fills this gap by advancing a quality-aware processing pipeline that
integrates image enhancement, augmentation, and classification tailored to the unique
properties of thermal data.

One of the core motivations is the absence of perceptually relevant, no-reference
image quality metrics for specialized imaging tasks. In our work on image decoloriza-
tion, we developed the TIA and WTIA metrics—non-parametric, robust measures that
accurately quantify contrast preservation without relying on subjective thresholds [1].
These metrics offer substantial improvements over traditional methods like CCPR and
E-score, enabling optimal grayscale conversion with minimal distortion of salient re-
gions.

In the thermal domain, we introduced a novel entropy metric, Block-wise Image
Entropy (BIE), which combines global statistical behavior with local structure preser-
vation. This metric enhances quality assessment in thermal images, allowing for more
accurate visibility enhancement and noise mitigation. Moreover, BIE serves as an op-
timization target in parameter tuning frameworks powered by genetic and bat algo-
rithms, yielding superior contrast enhancement results validated across multiple ther-
mal datasets [2].

Building on this foundation, we proposed a novel augmentation strategy using BIE-
guided contrast optimization to generate high-quality synthetic samples for training
classification networks. This augmentation method significantly improves model per-
formance in low-data regimes, outperforming standard techniques such as geometric
transforms and histogram equalization. Experiments with PV module defect datasets
showed consistent accuracy and robustness gains across a range of deep learning mod-
els, including CNN and Transformer architectures [3].

Finally, to enable scalable deployment in resource-constrained settings, such as



UAV-based inspections, we designed SlantNet, a lightweight neural network incorpo-
rating slant harmonic convolutions. This architecture preserves critical frequency in-
formation while minimizing computational load, achieving competitive classification
results on small, low-resolution thermal images [4].

In summary, this dissertation presents an end-to-end framework for optimizing
thermal image processing, from quality assessment and enhancement to data augmen-
tation and classification. The methods proposed are not only domain-aware and data-
efficient but also adaptable to broader applications, including wind turbine inspection,
transformer monitoring, and medical thermography. This work offers a significant step
toward scalable, intelligent, and energy-aware fault analysis solutions.

Aim of the Work and Key Objectives

The aim of the work is to develop an end-to-end, resource-efficient image pro-
cessing pipeline that boosts the accuracy and reliability of thermal/infrared defect de-
tection,particularly for solar PV inspection,while remaining deployable on low-power
devices.

To achieve this goal, the research is structured around the following key objectives
and tasks:

1. Develop robust no-reference quality metrics to evaluate and optimize color-to-
grayscale conversion. The proposed metrics, Threshold-Independent Area (TIA)
and its weighted variant WTIA, ensure perceptual structure preservation during
preprocessing and enable data-driven decolorization without relying on reference
images.

2. Design an entropy-based contrast enhancement framework tailored for thermal
infrared imagery. The method integrates a novel uncertainty quantification term
to guide adaptive parameter selection, effectively suppressing noise and enhanc-
ing subtle thermal patterns that are critical for accurate diagnostics.

3. Implement a metric-guided data augmentation strategy to enrich thermal image
datasets. This includes generating high-quality synthetic samples based on con-
trast and entropy metrics, prioritizing augmentation of underrepresented classes
and rare fault types to improve model generalization under data-constrained con-
ditions.

4. Propose a compact and efficient neural network architecture, SlantNet, that in-
corporates harmonic slant convolutions for spatial-frequency representation. The
model achieves strong classification accuracy on low-resolution thermal data
while minimizing computational cost, making it ideal for deployment on drones,
embedded systems, and other edge devices.

5. Integrate all components into a unified processing pipeline and benchmark it
against state-of-the-art methods. The system is evaluated on multiple datasets,



including those from solar PV modules, wind turbines, and industrial equipment.
To foster reproducibility and community use, an open-source implementation is
made publicly available.

Research Objects / Subject of the Research

The object of this research is thermal and infrared imaging data used for defect de-
tection and classification in renewable energy systems and industrial inspection. Specifi-
cally, the study focuses on thermal images of photovoltaic (PV) modules, wind turbine
blades, and electrical equipment such as transformers and motors, emphasizing low-
resolution, noise-prone imagery acquired under real-world conditions, particularly from
UAVs and embedded systems. The subject of the research is the development of an
integrated, quality-aware image processing framework tailored to thermal data. This
includes designing no-reference image quality assessment metrics for grayscale conver-
sion, entropy-based contrast enhancement methods incorporating uncertainty quantifi-
cation, and data augmentation techniques driven by thermal-specific quality measures.
Additionally, the research investigates lightweight neural network architectures such as
SlantNet that combine computational efficiency with strong classification accuracy. The
methods are evaluated across multiple thermal datasets to demonstrate improvements
in model robustness, interpretability, and deployability in constrained environments.
Together, these components form a cohesive pipeline for intelligent, automated inspec-
tion in solar energy and related domains.

Research Methods

The research methodology is grounded in analytical modeling, algorithmic devel-
opment, experimental validation, and comparative evaluation. First, theoretical foun-
dations were established for novel image quality metrics, Threshold-Independent Area
(TIA), its weighted variant WTIA, and Block-wise Image Entropy (BIE), designed for
no-reference assessment of grayscale conversion and thermal image contrast. These
metrics were derived from principles of information theory, human visual perception,
and structural image statistics. Optimization techniques such as genetic algorithms and
the bat algorithm were employed to automatically tune enhancement parameters for
thermal images, using the proposed metrics as objective functions. For data augmen-
tation, a metric-guided oversampling method was implemented, where thermal images
were enhanced and selected based on their BIE scores to ensure high-quality synthetic
training samples. Deep learning methods were applied to design and train lightweight
convolutional neural networks, most notably SlantNet, featuring harmonic slant convo-
lutions for efficient classification of low-resolution thermal images. The performance
of all proposed methods was assessed through extensive experiments using publicly
available and custom thermal datasets from PV modules, wind turbines, and industrial
systems. Evaluation metrics included accuracy, precision, recall, specificity, and run-



time efficiency, benchmarked against state-of-the-art enhancement and classification
techniques to validate the effectiveness and practical viability of the proposed frame-
work.

Scientific Novelty of the Work

The scientific contributions and novelties of this research are summarized as fol-

lows:

* A new class of no-reference quality metrics, Threshold-Independent Area (TIA)
and its weighted variant WTIA, are proposed for evaluating grayscale image
quality without requiring ground-truth references or parameter tuning, ensuring
robust perceptual structure preservation during decolorization.

* A novel entropy-based metric, Block-wise Image Entropy (BIE), is introduced
for thermal image quality assessment. It effectively captures both local and global
contrast variations, enabling accurate contrast enhancement while suppressing
noise in thermal imagery.

* For the first time, thermal image enhancement is formulated as an optimization
problem where image quality metrics (TIA, BIE) serve as objective functions
in evolutionary algorithms, including genetic and bat algorithms, for adaptive
parameter tuning.

* A metric-guided data augmentation framework is proposed, generating high-
quality synthetic thermal images by selectively enhancing contrast and entropy,
thereby improving model generalization in low-data or imbalanced scenarios.

* A new lightweight neural network architecture, SlantNet, is developed, incorpo-
rating harmonic slant convolutions to achieve high thermal classification accuracy
with significantly reduced computational complexity, suitable for real-time edge
deployment.

» The proposed methods are integrated into a quality-aware pipeline primarily ap-
plied to thermal PV module datasets for fault classification, with additional ex-
periments conducted on other thermal datasets, such as pedestrian and vehicle
detection or wind turbine inspection, to evaluate generalizability in enhancement
and classification tasks.

Practical Significance of the Work

The results of this research have direct applicability in the development of efficient

and scalable solutions for automated thermal inspection in real-world environments.
The proposed image quality metrics, enhancement techniques, and lightweight classi-
fication models are specifically designed to operate under resource constraints, making
them highly suitable for deployment on embedded devices, UAV platforms, and edge-
based monitoring systems. This enables real-time fault detection in photovoltaic (PV)
modules, reducing inspection costs, minimizing downtime, and improving long-term
energy output.



Moreover, the developed methods contribute to the broader field of thermal image
analysis by offering tools that enhance contrast, quantify uncertainty, and guide data
augmentation in a quality-aware manner. These contributions extend beyond solar en-
ergy applications, demonstrating effectiveness in other thermal domains such as pedes-
trian and vehicle detection in surveillance, as well as industrial equipment monitoring.
The open-source release of key components encourages reproducibility and adoption
by both academic researchers and industry practitioners seeking robust, interpretable,
and efficient thermal imaging solutions.

Publications

The results of the dissertation have been published in 4 scientific articles, 3 of which
are indexed in international databases such as Web of Science and Scopus. The full list
of publications is provided at the end of the abstract.

Scope and Structure of the Dissertation

The dissertation consists of 115 pages, including an introduction, four chapters, a
conclusion, and an appendix. It contains 132 bibliographic references and incorporates
both theoretical developments and experimental results based on real thermal datasets.

Content of the Dissertation

Introduction is the first chapter of the dissertation and presents the motivation,
research context, problem formulation, and overall structure of the work.

In Chapter 2, the proposed threshold-independent quality assessment framework
for image decolorization is presented. The chapter introduces novel evaluation metrics
designed to address the limitations of existing methods, particularly their reliance on
user-defined thresholds and lack of alignment with human perception.

Section 2.1 introduces the problem of image decolorization, highlighting the im-
portance of preserving color contrast and structural content during grayscale conver-
sion. It motivates the need for robust no-reference quality metrics, especially in appli-
cations where no ground-truth grayscale reference is available. The challenge lies in
designing evaluation methods that account for perceptual contrast loss and structural
degradation, without depending on subjective human feedback.

Section 2.2 provides an in-depth review of related work. Traditional grayscale
conversion techniques apply fixed linear combinations of RGB values, such as:

g:aR+bG+CB, (1)

where a, b, and c are fixed weights, e.g., in the Luminosity method ¢ = 0.21R +
0.72G + 0.07B. While computationally efficient, these approaches often fail to pre-
serve chromatic contrast and perceptual salience (see Fig. 1).

More sophisticated methods include chrominance-aware techniques (e.g., Bala et
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Figure 1: Comparison of linear grayscale conversion methods. Decolorized images can
lose the contrast and become hardly visible.

al.) and energy minimization approaches (e.g., Rasche, Neumann), which attempt
to retain color edges or adapt the grayscale output based on visual models. Neural
network-based methods also emerged, using saliency cues and deep representations to
improve decolorization.

As for evaluation, existing no-reference metrics include the Color Contrast Preserv-
ing Ratio (CCPR) and Color Content Fidelity Ratio (CCFR). Combined, they form the

E-score:
2 - CCPR - CCFR

E- g — o)
SCore CCPR n CCFR , ( )
where . N .
CCPR = (IE,’y)Kl’,y) S a|gm_gy| _T, (3)
[1€2]]
<
CCFR =1 — #(x’y”(w’y”)@i'@ﬁz,y = @

with ¢, 4 as the CIE LAB color difference. These metrics depend heavily on a user-
defined threshold 7, leading to inconsistent evaluations across different methods and
datasets. Additionally, they fail to account for spatial saliency and do not generalize
well across varying image content (Table 1).

Section 2.3 presents the proposed quality metrics: Threshold-Independent Area
(TIA) and its weighted variant (WTIA). TIA addresses the instability of 7-dependent
metrics by analyzing the E-score curve across multiple thresholds (7 = 2...10) and
computing the area under a fitted regression line:

TIA:max(Qa;_ﬁﬁ) , 5)

where « and f3 are the slope and intercept of the line y = « + S approximating the
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Figure 2: Workflow for proposed quality metrics: An overview of the sequential steps
and stages involved in calculating the TIA and WTIA quality metrics

E-score curve.
To better align with perceptual importance, WTIA incorporates visual attention
using weighted E-score components:

2 - WCCPR - WCCFR

E-score,, = , ;
neore WCCPR + WCCFR (6)
where weights w,, w,, are derived from saliency maps:
WCCPR — 2= Wetyl(@,y) € Q90 — gy 2 7 )
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This modification ensures that regions more important to human perception are em-
phasized, enhancing metric reliability. The full pipeline is illustrated in Fig. 2.
Section 2.4 describes simulation studies validating the effectiveness of TIA and
WTIA. Using Cadik and COLOR250 datasets, correlation with human ratings was
assessed using the Kendall rank coefficient R:

R #{concordant pair} — #{disconcordant pair}
B in(n—1) ’

&)

TIA and WTIA showed significantly higher R values than E-score and its components,
validating their perceptual alignment. As we can see in Table 1, the proposed metrics
achieve the highest correlation with both accuracy and preference scores, confirming
their superiority in reflecting human judgment. Furthermore, a genetic algorithm was



Table 1: Average Kendall correlation rank between metrics and user scores on Cadik’s
dataset (C) and the subset of it (C’)

Metric Accuracy Preference

C C C C
CCPR,—4 0.2341 0.2971 0.2222 0.2698
CCPR,=5 0.2341 0.2925 0.2222 0.2562
CCPR,—¢ 0.2222 0.2834 0.2183 0.2472
CCFR,—s 02430 0.2210 0.2953 0.2763
CCFR,—5 0.1950 0.2025 0.2626 0.2479
CCFR,—¢ 0.2586 0.2616 0.3180 0.2977
E-score,—3 0.4167 0.4376 0.4603 0.4558
E-score,—4, 0.4405 0.4603 0.4762 0.4785
E-score,—5 0.4365 0.4512 0.4563 0.4603
E-score,—¢ 0.4206 0.4376 0.4484 0.4467
E-score,—7 0.4206 0.4376 0.4563 0.4558
TIS 0.1905 0.2517 0.2024 0.2245
TIA 0.4563 0.4785 0.4841 0.4875
WTIA 0.4802 0.5011 0.4921 0.5011

applied to solve:
max F(a, b, c), (10)

a,b,c

where F' is TIA or WTIA, and a, b, c are grayscale weights. This optimization yielded
content-adaptive grayscale conversions that outperformed traditional fixed-weight ap-
proaches.

Section 2.5 concludes the chapter by summarizing the key contributions. TIA
and WTIA provide robust, threshold-free, and perceptually aligned evaluation tools
for grayscale conversion. Their integration into optimization frameworks enables high-
quality, adaptive decolorization across diverse applications, overcoming limitations of
prior methods and advancing the field of image quality assessment.

In Chapter 3, the focus shifts to thermal imaging, where a novel entropy-based no-
reference Image Quality Assessment (IQA) metric is proposed, aimed at addressing the
limitations of existing enhancement and uncertainty quantification methods in infrared
images. This chapter introduces Block-wise Image Entropy (BIE), a hybrid metric that
combines local structural analysis with global contrast cues to evaluate and optimize
the quality of thermal images under challenging conditions.

Section 3.1 introduces the role of thermal imaging across fields such as medicine,
building diagnostics, and industrial maintenance, emphasizing the difficulty of process-

10



ing noisy and low-contrast infrared images. It discusses how uncertainties, stemming
from sensor noise, environmental influences, and the complex physics of heat trans-
fer, lead to image artifacts and analysis errors. Despite the broad application of ther-
mal imaging, traditional tools for uncertainty quantification remain underdeveloped.
Quality metrics, particularly entropy-based approaches, are central to image evaluation
and enhancement. However, conventional formulations fall short in thermal contexts.
These limitations motivate the need for a new formulation that can more reliably assess
the informational content of thermal images.

Section 3.2 reviews existing entropy-based and block-wise metrics. Shannon en-

tropy,
N

E(I) = - P(i)log, P(i), (11
i=1
measures the global uncertainty of pixel intensity distribution, where P(%) is the proba-
bility of the ¢-th intensity level, and N is the number of possible intensity levels. Rényi
entropy,

N
1 o
Ro(I) = —log, (Z}P(z) ) (12)
generalizes this with a parameter « that adjusts sensitivity to pixel probability concen-
trations. Yet both fail to capture spatial structure and are prone to noise. Block-based
metrics like EME and AME offer localized evaluations:

1 < Ik
EME(I) = = 20 In — -2 13
(I n§< nfr’;iﬁc)’ (13)
1 ~ ko k k Imax_Imin
AME(I) = EZaM(I Y In M(I%), M(I*) = FAN ! (14)

k=1

where 7 is the number of blocks, I%,, and I*. are maximum and minimum intensities
in block £, and c is a small constant to prevent division by zero. These metrics are often
misled by noise, overstating quality in degraded images.

Section 3.3 introduces the Block-wise Image Entropy (BIE) metric, which inte-

grates global contrast, block-wise entropy, and structural consistency. It is defined as:

LS M) () sy
1+%22:1 E(Iy) 1"‘%22:1 SD(Ik)7
(15)
where M'(I*) is the normalized modulation of block I*, E(I}) is its Shannon en-
tropy, and SD(I) is standard deviation. The term AD P(I) captures average deviation

BIE(I) = ADP(I) x

11
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Figure 3: Thermal image and intentionally distorted versions with identical histogram
distributions.

Table 2: Entropy-based metric values for images depicted in Figure 3.

Image E R2 SD EME* AME'  BIE'
I 7.202 4.868 39.89 9.892 0.289 0.114
I 7.202 4.868 39.89 18.12 0.345 0.045
Is 7.202 4.868 39.89 28.63 0.315 0.027

* All block-based measures are calculated using block_size = 15 parameter value.

percentage:

[A) — L/2|

M/ [k max min
I /2 ) ( )

ADP(I)=1- — 7 (16)
where A([) is the image mean and L the dynamic range (typically 255). BIE penalizes
uniform and noisy images while rewarding balanced contrast with perceptually mean-
ingful variation.

Figure 3 shows a thermal image and two distorted versions, all sharing identical
histograms. Table 2 lists entropy-based metric values for these images. While global
metrics like E and SD remain unchanged, BIE successfully detects the distortions. In
contrast, EME and AME often increase in noisy cases, revealing their higher sensitivity
to noise and reduced reliability.

Section 3.4 evaluates the BIE metric across several thermal datasets. Computer
simulation results show that BIE yields consistent rankings for enhancement methods
and correlates better with visual quality than AME or Shannon entropy. The section
also introduces optimization frameworks using Genetic Algorithms (GA) and the Bat
Algorithm (BA), with BIE as the objective function:

max BIE(F(Is,plaapn))v (17)

where F' denotes the image enhancement function applied to the source image I, and
P1, ..., Dn, are the tunable parameters of the enhancement method. The goal is to find

12



the parameter set that maximizes the Block-wise Image Entropy (BIE), yielding op-
timal visual quality. For example, Figure 4 shows the optimization of the Contrast
Limited Adaptive Histogram Equalization (CLAHE) algorithm, which enhances im-
age contrast by applying localized histogram equalization while limiting noise ampli-
fication. The parameters tuned include clip limit (CL) in the range [1, 60] and grid
size (GS) in [4, 40]. In the first case, both default settings and Shannon entropy—based
optimization result in over-enhanced, noisy images. In contrast, BIE selects optimal
parameters (CL = 6, GS = 4), producing visually superior results.

Source

Figure 4: Results of the optimization of CLAHE algorithm (clip limit (CL) and grid
size (GS) parameters) using E and BIE metrics.

Finally, the chapter introduces a BIE-weighted image fusion model, which serves

13



as an effective application of the thermal image quality measure:
g (18)

where I; are enhanced images and m; their BIE scores.

Section 3.5 concludes the chapter by summarizing the key findings: the BIE metric
addresses limitations in traditional entropy and block-wise measures, offering a percep-
tually consistent and noise-robust quality criterion for thermal images. Its integration
into parameter tuning and image fusion pipelines demonstrates utility across multi-
ple image enhancement frameworks and datasets. BIE is shown to facilitate reliable
thermal image assessment and optimization, advancing uncertainty quantification and
visual clarity in critical infrared imaging tasks.

In Chapter 4, a novel thermal-specific augmentation strategy is introduced to ad-
dress data scarcity challenges in fault classification tasks, particularly for photovoltaic
(PV) modules. The chapter begins by discussing the limitations of conventional aug-
mentation techniques when applied to thermal data, highlighting how unique infrared
characteristics demand tailored strategies. It then presents the use of Block-wise Image
Entropy (BIE), a no-reference image quality assessment metric, as the foundation for
a metric-driven augmentation pipeline.

Section 4.1 provides background on thermal image classification and outlines the
motivation for quality metric-based augmentation. It details the shortcomings of tra-
ditional augmentation methods, such as flips, brightness adjustments, and histogram
equalization, when applied to thermal imagery, and reviews recent works that incorpo-
rate deep networks or GANs for thermal data expansion.

Section 4.2 introduces the proposed method in detail. It begins by defining the
BIE metric, which incorporates both global and local image characteristics, making
it well-suited for evaluating thermal image quality without the need for a reference
image. This section explains how each thermal image is enhanced using parametric
contrast stretching, with stretching limits optimized to maximize the BIE score. For
each original image, the enhancement parameters that yield the top two BIE values
are used to create two new augmented samples. These enhanced images, along with
the original, are then used to expand the dataset. The process ensures that augmented
samples are not arbitrary but are perceptually and structurally meaningful according to
the thermal quality metric.

Section 4.3 presents the experimental setup, including datasets, training configu-
rations, and the neural network architectures employed for evaluation, ranging from
AlexNet to Swin Transformer. It compares performance metrics across several aug-
mentation schemes, such as geometric, brightness-based, and BIE-based strategies, re-

14



porting improvements in accuracy, precision, recall, and specificity. The section notes
particularly strong gains on lightweight networks like MobileNetV3, where contrast-
aware augmentation significantly boosts generalization.

Section 4.4 concludes the chapter by reaffirming the practicality and effectiveness
of the proposed technique. It outlines future directions, including the development
of thermal-specific deep architectures and the refinement of augmentation policies for
broader thermal imaging applications.

In Chapter 5, a lightweight neural network architecture called SlantNet is pro-
posed for efficient and accurate classification of faults in thermal images of photovoltaic
(PV) systems. The chapter introduces the need for computationally efficient models in
large-scale solar installations and presents SlantNet as a solution combining Slant Con-
volutional layers with thermal-specific data augmentation to enable real-time inference
and robust fault identification.

Section 5.1 introduces the motivation and challenges associated with PV system
fault detection using thermal imagery. It highlights the limitations of manual inspec-
tion and traditional electrical testing, emphasizing the need for automated, scalable
approaches. The section also outlines the opportunity to enhance classification models
with directional and spectral feature sensitivity.

Section 5.2 provides technical background on image transforms, particularly the
Slant Transform (SLT), and its relevance to thermal imaging. It explains how SLT is
well-suited for encoding linear brightness gradients and piecewise structures, making
it ideal for capturing fault-relevant patterns in low-resolution thermal data. The section
reviews related work on harmonic convolutions and lightweight CNN models.

Section 5.3 presents the proposed method in depth. It introduces Slant Convolu-
tion (SC) as a replacement for traditional learnable filters. These SC layers use fixed
SLT basis functions, enhanced by trainable weights («, ) that modulate the frequency
response using a logarithmic transformation. The section describes how the SC layer
improves interpretability and efficiency by leveraging structured directional features.
The architecture of SlantNet is then detailed: it comprises two SC blocks followed by
max-pooling, fully connected layers, and dropout regularization. Input images are pro-
cessed at a resolution of 40 x 40, making the network suitable for mobile and embedded
devices. Furthermore, the augmentation pipeline includes geometric flips, contrast en-
hancement based on the BIE metric, and optimal decolorization guided by the TIA
metric, targeting class imbalance and thermal feature preservation. This combination
yields a highly optimized training set with improved visual discriminability of rare fault
types.

Figure 5 compares standard and Slant Convolution pipelines. While standard con-
volution learns spatial filters directly from data, Slant Convolution first projects the
input onto a fixed harmonic basis and then modulates it using trainable logarithmic pa-

15
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Figure 5: Comparison of Standard Convolution and Slant Convolution. Standard con-
volution learns arbitrary filters directly from data, while Slant Convolution first de-
composes the input using a fixed harmonic basis and then applies trainable logarithmic
enhancement to generate effective filters that better capture directional intensity varia-
tions.
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Figure 6: Overall architecture of the proposed SlantNet model incorporating the Slant
Convolution (SC) layers.

rameters. This structured process enhances the extraction of directional and frequency-
dependent features.

Figure 6 illustrates the overall structure of the network, comprising two convolu-
tional blocks, max-pooling layers, and a fully connected classifier. Below, we describe
the architecture in detail, along with the parameters and output dimensions for each
layer.

Section 5.4 reports experimental results and comparisons. The section benchmarks
SlantNet against AlexNet, ResNet50, MobileNetV3, EfficientNet, ShuffleNetV2, and
Swin Transformer on binary and 12-class PV fault classification tasks. Evaluation met-
rics include accuracy, precision, recall, and specificity. SlantNet achieves the highest
binary classification accuracy (95.1%) and competitive multiclass accuracy (82.75%),
outperforming all evaluated models in classification performance. Full metric results
are presented in Tables 3 and 4. In terms of efficiency, SlantNet also delivers the high-
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Table 3: Classification Performance on the Validation and Test Sets for binary classifi-
cation

Model Test Validation

Acc Pr Rec Sp Acc Pr Rec Sp
AlexNet 9245 9321 91.63 9327 | 92.80 9431 91.11 9449
ResNet50 92.65 9298 9233 9297 | 92.05 92.18 9191 92.19

SqueezeNet 89.60 9225 86.55 92.67 | 88775 92.08 84.82 92.69
ShuffleNetV2 | 9295 93.02 9293 9297 | 9220 93.07 91.21 93.19
MobileNetV3 | 93.30 93.07 93.63 9297 | 9295 9326 92.61 93.29
EfficientNet 93.50 9487 92.03 9498 | 9405 9537 92.61 9550

ViT 88.05 89.80 8596 90.16 | 88.40 90.69 85.61 91.19
Swin 9135 9227 9034 9237 | 91.75 9336 8991 93.59
Proposed 9510 9548 9472 9548 | 9435 9540 93.21 95.50

Table 4: Classification Performance on the Validation and Test Sets for 12-class clas-
sification

Model Test Validation

Acc Pr Rec Sp Acc Pr Rec Sp
AlexNet 77.50 61.41 5850 97.61 | 7795 6540 60.16 97.59
ResNet50 78.75 6645 6256 97.68 | 7835 67.32 6094 97.62

SqueezeNet 76.70  62.46 5741 9746 | 77.85 6720 59.16 97.49
ShuffleNetV2 | 79.30 6643 62.59 97.78 | 80.65 7232 64.00 97.82
MobileNetV3 | 82.10 68.11 67.92 98.11 | 81.60 7132 6493 98.05
EfficientNet 8220 69.37 71.05 98.19 | 8255 7235 69.51 98.18

ViT 74.70  60.60 5476 97.17 | 75.65 65.26 57.57 97.16
Swin 8045 6593 63.19 9798 | 81.55 71.61 66.77 98.02
Proposed 82.75 69.52 66.83 98.15 | 84.30 74.06 066.67 98.28

est throughput at approximately 55,000 images per second, making it well-suited for
real-time applications.

Section 5.5 concludes the chapter by summarizing the contributions of SlantNet in
advancing thermal image classification. It reiterates the benefits of integrating spectral
transforms with deep learning and highlights the success of metric-based augmentation.
Future directions include deployment in drone or IoT systems using TinyML, adapta-
tion to other domains such as wind turbines and medical imaging, and exploration of
other fast orthogonal transforms for further efficiency gains.

Chapter 6 concludes the dissertation by synthesizing the key innovations developed
across four interrelated studies into a unified thermal image analysis framework tailored
for photovoltaic (PV) fault detection. It reflects on how the proposed no-reference qual-
ity metrics, entropy-based enhancement, quality-guided augmentation, and the Slant-
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Net architecture collectively address the challenges of low-resolution, noisy, and imbal-
anced thermal datasets. These contributions advance both the theoretical foundations
and practical implementations of thermal imaging in renewable energy diagnostics. The
chapter also outlines the broader impact of this work—demonstrating its scalability,
generalizability, and applicability to edge deployment and multi-modal infrastructure
monitoring—while highlighting promising future directions in autonomous inspection,
cross-modal learning, and scalable Al systems for thermal diagnostics.

Main Results of the Research

This dissertation introduces a unified framework for thermal image analysis and
classification, with particular focus on solar photovoltaic (PV) fault detection. The
research is grounded in four key contributions:

* Proposed two no-reference image quality metrics, TIA and WTIA, that assess
perceptual fidelity in color-to-grayscale conversion by combining chrominance
retention and edge-aware contrast, improving grayscale preprocessing for ther-
mal data [1].

* Developed a new entropy-based quality metric tailored for thermal images,
which integrates block-wise entropy, standard deviation, and average deviation
percentage (ADP) to guide contrast enhancement and quantify uncertainty in
low-resolution and noisy thermal imagery [2].

e Introduced a quality-driven augmentation technique that selects contrast-
enhanced samples based on the BIE metric, enabling the generation of diagnosti-
cally meaningful samples and significantly improving classification performance
under class imbalance [3].

* Designed SlantNet, a lightweight CNN architecture that incorporates Slant
Transform-based harmonic convolutions, enabling efficient directional feature
extraction and achieving state-of-the-art accuracy and throughput for PV fault
classification with low computational cost [4].

These contributions form a coherent and scalable pipeline for robust, interpretable,
and computationally efficient thermal image analysis. The proposed methods have
broad applicability to real-time fault detection in solar infrastructure and can be ex-
tended to other domains such as wind turbine monitoring, transformer diagnostics,
and industrial inspection. Future work will focus on integrating this framework into
multi-modal, drone-based inspection systems, exploring label-efficient training through
self-supervision and federated learning, and releasing an open-source toolkit to support
widespread adoption.
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MUSUGLP UCUUWU UL UL N LELE ONSPUULUSARU L
YhUONFE3NFL LER

Upumpuljn

Upluyhtt $nunnynjumuyhtt hwdwjuipgbph quaqyuowgha abpnpnoip wakgply
E wjuniww, guop dwjuuny dndhwnphogh dbpnnbtiph wwhwayp' ninnjuod
dhindwpbiph, thwgnuiabph Ynnnghwyh b 9bpdwyhét ufuwdbph hwynbowpbpdwon,
npnip 0Juqbgind Gd Labpghuwyh wpnymowpbpnudp: Rodpuundhp 9bpdwght
wuwwnlbtpobph dywyniip Jupnn £ pugwhwnty wyn phipnipymbdbpp, vwuyd
npuig guop Yniwmpwuwnp, vwhdwauthwy yuthtpp b wndniyp fuwmbquipnd Go
nuuwlud hwiwupgywyht mbunnnipjub wignphpuiobpho:

Padpuunpihp yuumbpobph wondwihwabph hwynowpbpdwd hwdwp wyu
nhubpunughuynid vuwlyl) £ njupuupyniowybin, npulh ggwhwnmdiwi ypw
hhitwo wpngtu: Upjuwwnwapuyht onpwib obpunmd L pupbjuynud, wdjuobph
ninuyinud b phpl dpniuyhtt gwaghp' hwnpwhwpbing wbuwdbih vybljuph
dbpnnibph vwhdwbowthwynudobpn:

Lwlu wnwywplynud &b TIA U WTIA npuyh suthhybdbp, npnap puwbuuwbiu
qowhwwnnud 5o ywuwnyiph npup gnibtwputhiwd popugpnud [1]: Uju suthhydbinp
gbpuquiagnd G CCPR U E-score dhipnnitiphtt wyywhnyting winuyunnuiatphg
qtnpd gniwputhnud: QEpdwyhd uwmytpotph hwdwnp apuyugynud £ pinuyght
hodnpiwghnt  Ebwnpnwhwyh (BIE) @np pwthhy, npp dhwdnpmd £ ginpuy
Jhawugpnipniadt nt mbnuyhét junmggwopp: BIE-0 nignnppnud £ qhabwnhy U
sn9hh wignphpdbtpny htidnn owyunhdwugndbtp® pupbjuybing Yninpuunp b
Ytpwhultny wnunyp [2]: BIE-& dwl oguugnpoynud £ vnfyuyatph pbgpuyodwa
hwdwp, npp unbnonmd £ hpuwnbuwlwd uhiptinhl Gdnpatp' pupdpugating
nuuwupguiwd dygpunipyniap’ thnpp wdyuydtiph wuydwaatpnd [3]: Qtpduyha
wuwwlbpobph nuuwlupgiwt hwdwnp wonwownplynd L SlantNet guagp, npp
tbpuwnnd £ yhn Yniynpmghwotp (Slant Convolution): 40 x 40 9tpdwyhd
wwwltipbbph ypw wyt duglighmd £ huwygupuyhtt pupnmpymap ~60%-ny’
gbpwquaghiny CNN-obph apgpunnipjnibn [4]:

Uyu obpppnudotpp dhwuhét abwynpnid 566 wpwgq, hnwwh b ugd
Jhpwnbih gbpiught yuwnlbph Ybpinidnipynit, Jhpwnbih dwb hnndwnugbbph,
wnpwiudnpdwnnpitph b pdojuljud  wwwnbpibph  hwdwp' wywlghng
funpnpuowuwy, Litpghw-futiwynn dndhwnphaiqha:

Uzluwumnwigiph twuwnwyp b nphonwpyywd futinhpatpp

Upfjuwnwoph dwyuwnmulpn pbpnipynid@itph apgphn hwymowpbpdwa hwdwp
wpymiwybn  funnnujuwnp dywlbio £, npd oymhvwjugwd £ wpluwght
Jwhwiwyotph uvnmquwuio U guop hgnpmipjudp vwppbpnd nbnujuydwa
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hudwp:

vbinhpotipd  Go' dwliwgol]p npuwlh  yunhhpbtipn (TIA/WTIA), dywlly
wnuyunnuiobph  djuundudp Juymb,  Lobnpnyhugh Jpu hhdodwo
Gpiuyht wuwulbpobph pwpbuygnnd, uvnbnob] wdyuibbph  hwjwpwonih
wniqutiunwghuyh dipnn, dywlty SlantNet gubign' wipnynifay b puuwljupgdwia
hwiwp, b wipnny onpubd hinbgptp Jhudnpgwo hwdwupgmd® thnpdwplytyng
pwquupinyp 9tindwyhtt wyjuabinh Ypu:

Umnugywd wpnymapatph Yhpunwljuia tywbwympymap

Upjuwnwapnid abpjuyugyud gnpohpatpp wywhnynd G wquunlepatph

wpynmbwytn  ghwhwwnnd U guuwluagnnd® ppuud  dwdwbwyn,
hwpiwpbgyud npnadbph, abpunnmgyud vwpptph b Ggpuyhtt hwdwwupgbnh
Ypw Yhpundwd hwdwp: Cnpwd' dpunuwy wnwbig hndwé npuyh swithhybbpp,
hwpdwpynn pwupbjuynuip b SlantNet dnnbip, tJugbhgimd L puuwlupgqiwa
duwdwawlp' pwpdpugbbiing wpliughtt Juwhwbwlatph wpynibwytunpniap:
Utpnnobpp  dwl  Yhpwnbjh &b wbuwhuliwd,  wpymibwpbpuud b
wijunwagnipjud dndhnnphoigh ninpuatpnd.

U jummmnuwiiph dwduyp b junmgyjwopp

Usluwunwibpp pngpymd £ 115 k' dbpunjuy abpuwompymb, snpu goifu b

tgpuugnipynit: Uyt wyupmbowynud £ 132 gpujuinipjub winpnip:

Ujuwmmnuwiaiph hhdbwljus wpnymbpatpp

Upjuwnwopnid  abpuyugud £ 9bipduwyhtt wwwnlbph  Jepmionipyum

U puuwlupqiwd  dhugnpuwo  opywbwl,  Yhbwpnbwguo'  wplwghb
dnunnynpunuyhtt nEdEYnatph hwynbwptpdwd Jpw: zZhddwluwd wpnynopbpp
htnlywid Go.

e Unwywnplyty && TIA U WTIA ny-hniwé npuljh swthhybtip® gnidwpuddwi
npopwgpnid junnigqudpuyht b gnibught ntnbjunynipjut wuwhwywanip
gbwhwwunbnt hwdwp [1]:

e Upwlpyty E 9Gpduyhlt wwwnlbpoiph hwdwp  hwpdwpgJue  anp
Eownpnuhwyny ywthhy, npp dbpunnid £ pinuyhtt Linpnuhw, uinwtiqupn
otinnud U dhohlt obnuwe wnynu' hwlunpmpjubé  pwupbugiud b
winpn)nipjud puwtwjujuiwgdwa hwdwn [2]:

o Lhpuwywglty L wfuydtph  ponuyddwé  dbpnn, npp phuopnod
L pwpdp npuyh @dnpdbp BIE  ywthhyh  dhgngny’  wybjughtiing
nuuwlupgiwd wprynmbwybnnpynip nuubph withwjwuwpuyynmpjui
wwydwbodbpnud [3]:

o Ltpnnlty & SlantNer' phpl dbjpnbughlt guwbg, npp dbpunmd E ugkown
Unbynymghwabp’ ninnnppywd wnwbdbwhwnmpynibibbph wpymbwytn
hwidwd hwdwp' wywhnybnyg pupdp dgpunipynitt b wpugmipyma [4]:
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OINTUMU3AIA METO/10B OBPABOTKHA N30BPAKEHUI U UX
INPUMEHEHUA
AHHOTaNUA

MacmtabHoe BHe[IpeHue COJHeuHbIX —(poroanekTpuueckux (PI) cucrem
YCWJIMIO TOTPEOHOCTh B ABTOMATUYECKMX W HEJOPOrMX MEeTO/aX WHCHEKIUH
IUId BhISIBJIEHUs JepeKTOB, TaKUX KaK MHUKPOTPELMHBI, KOPPO3Ms COeJUHEHMI
W TEpMHUECKHE aHOMAJIMH, CHWXXAIOUIME BBIPAOOTKY 3Hepruu. VHdpakpacHas
TepMorpacusi CriocoOHa BBISBJIATH TAKWME HEUCIPABHOCTH, OJHAKO €€ HU3KUA
KOHTpPAacT, OTPaHMYEHHOE pa3pelIeHHe U BHICOKAs YyBCTBUTENBHOCTb K MIYMY
3aTpyJHSAIOT UCIOIb30BAaHUE TPAJULIMOHHBIX METOJJOB KOMITBIOTEPHOTO 3PEHUS.

B nanHOW auccepraimu pa3pabotaH 3(p(EeKTUBHBINA 10 JaHHBIM U Ka4eCTBEHHO-
OpPMEHTHPOBAHHBI pabovMii mpolecc, aJaNTUPOBaHHBI K WH(QpaKpacHbIM
n300pakeHUsIM U1l AMarHOCTUKY HercnpaBHocTel B @D moxymsx. Ipemnaraemsiii
KOHBelep OObequHseT yJydlleHWe KauecTBa, pACLIMPEHHE [JaHHBIX M JIETKYI0
KJaccUUKALIMIO, TPeojiojieBasl OrpaHUYEHHs] METOJOB, pa3pabOTaHHBIX IS
BUJIUMOTO CIEKTpa.

IpencraBnens! 1Ba 6e39TAJOHHBIX MOKa3aTelisl KadecTBa n3obpaxeHnii — TIA
u WTIA, xoTopble OLIEHHMBAIOT COXpaHEHHe KOHTpacTa IpHU IpeoOpa3OBaHUU B
OTTEHKH ceporo 6e3 HeoOXOJUMOCTH MCIOJIb30BAHUS STAIOHHBIX N300pakeHun [1].
O1u MeTpuku npeBocxoadt kinaccuueckue CCPR u E-score, mo3Bosisisi mpoBOJUTH
npeobpazoBaHue 6e3 UCKakeHUH. IJIs TeIJIOBU3MOHHBIX M300pakeHunil peyiokeHa
HOBasg MeTpuka SHTpormn 1o Onokam (BIE), oObemuHsIOmas rio0anbHbIC
CTATUCTMYECKHE W JIOKaJIbHBIE CTPYKTypHble mpusHaku.  BIE Takxke ciyxur
ueneBoi (PyHKIMEH B alropuTMax ONTHMH3ALMKM Ha OCHOBE TI'E€HETHUECKUX
U aIropuT™Ma JIeTY4YHMX MBbIIed, TMOBBIIIAs KOHTpacT M MojaBiss ImyMm [2].
Kpome Toro, BIE ynpaBnser crparerueil reHepali CHHTETUYECKUX JAAHHBIX C
ONTHMHU3UPOBAHHBIM KOHTPACTOM, 3HAYUTEIIHHO MOBBIIIAsE TOYHOCTh KJIaCCU(pHKALIIN
B YCJIOBMSIX OIPaHUYEHHBIX JaHHbIX [3]. Inst paGoThl Ha YCTPOWCTBAX C
OrpaHMYEHHBIMHM pecypcaMd paspadoraHa Mogeib SlantNet — cBEpTouHas
HellpoceTh € (PUKCUPOBAaHHBIMM HAaKJIOHHBIMM TIapMOHMYEeCKMMH sapamu. Ha
n3o6paxkeHusx pazmepom 40 x 40 oHa CHMKaeT KOJIMYECTBO OMEpalyii C MJIaBaloIen
TOUYKOHN NIpuMepHO Ha 60% Npu COXpaHEHUH TOYHOCTH, COMIOCTABUMOM C TSDKENBIMU
mogenamu CNN u Transformer [4].

B coBokynHOCTH JaHHbIE pa3paboTKH (POPMHUPYIOT KOMIUIEKCHOE pelieHHe JUis
TepMorpahuyeckoil JMarHOCTHKH, OTJIMYaIoLleecsi CKOPOCTbIO, HAaJEXHOCTBIO
W TIPUMEHMMOCTBIO B JpyrHX HH(PAKpaCHBIX 3aJadyax — OT JUArHOCTHKU
BETPOYCTaHOBOK JJO MOHUTOPHHTA TPaHC(HOPMATOPOB M MEANIIMHCKON BU3YaJIM3aIMH.

OcHoBHas 1eJib PAa6OTHI H 3a1a4H
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Lenplo sBAsIETCS CO3/aHME JIETKOBECHOTO M 3aBEPLIEHHOIO KOHBelepa
IJ1s1 TOYHOTO OOHApYXEHHs TEIUIOBBIX JAe()eKTOB, ONTHMH3UPOBAHHOIO IS
00cJ1e10BaHNsI COTHEYHBIX MTaHeJ e M IPUTO/IHOTO /ISl pa3MelleHH 1 Ha MaJIOMOIIHBIX
YCTPOMCTBAX.

KimoueBble 3aauil BKIIIOYAIOT: pPa3pa0OTKy Oe33TANIOHHBIX METPHK KadyecTBa
(TTIA/WTIA); cozgaHue METOa KOHTPACTHOTO YJIYUIIEHMSI HA OCHOBE SHTPOIIMH;
TEHepaLlio CHHTETMYECKUX [JAHHBIX [1JIs1 OaJaHCHPOBKM PEAKUX  KJIACCOB;
MpoeKkTrpoBaHue 3pdexTrBHON Moaenu SlantNet; MHTerpalyio BCeX KOMIOHEHTOB
B €/IMHBIA OTKPBITHIA ITPOrpaMMHBIN KOMILIEKC, MPOTECTUPOBAHHBIN Ha Pas3JIMYHBIX
TETUIOBU3MOHHBIX HA0Opax JaHHbIX.

IIpakTnyeckasi 3HAYNMOCTh MOJYyYEeHHBIX Pe3yIbTaToOB

IpemnokeHHsle B paboTe WHCTPYMEHTHI 00ecrneunBaloT 3(MQEKTUBHYIO U
JOCTYIHYIO TEIJIOBU3HOHHYIO MHCIEKLMIO B PEaIbHOM BPEMEHH, aJaliTUPOBAHHYIO
U151 ICTIOJIb30BAHMSI Ha JIPOHAX, BCTPOSHHBIX YCTPOWCTBAX M MOTPAHUYHBIX CHCTEMaX.
Wurerpanus 6€33TaIOHHBIX METPUK KavecTBa, aJAalTUBHOTO YIIYUIICHHS W JIETKOW
mozenu SlantNet O3BOJIsIeT COKPATUTh BpeMsl TPOBEPKH U MPOCTOi 000pyI0BaHMS,
noBbIast 3(peKTUBHOCTD (DOTOIIEKTPUUESCKHX MMaHe erd. Pa3paboTaHHbBIC METOJBI
TaKKe MPUMEHHUMBI B BU/IEOHAOIOEHHIH, TIPOMBIIIIIEHHON TMarHOCTHKE U CUCTEMax
6e30macHOCTH.

O06bEM u cTpyKTypa padoThl

Huccepranms cogepxut 115 cTpaHuI W BKITIOYAET BBEAEHHE, YETHIPE IJIABH U
3akiouenue. B padore npusesenst 132 6ubnmorpaduieckux UCTOUHUKA.

OcHOBHbBIE pe3yJbTaThl pa6oThI

B pabore mpexcraBieH eauHBI TOAX0A K 00paboTKe W KiaccU(UKaluM
TEIUIOBU3MOHHBIX HM300paXeHMH C aKIEHTOM Ha [MarHOCTHKY COJHeyHblx O
MoayJiell. OCHOBHBIE HAyYHBIE PE3YJIbTAThl BKIIIOUAIOT:

e Pazpaborka nByX O€33TaJOHHBIX MeETpHK KauecTBa u3oOpaxenuil (TIA

n WTIA), OLEHMBAOIUX COXPAHEHHE XPOMATUYECKUMX U CTPYKTYPHBIX
XapaKTepHCTUK IPH NMPeoOpa30BaHNK N300paXeHUsI B OTTEHKH ceporo [1].

* BBezieHre HOBOY SHTPONUITHON METPUKH IS TETUIOBU3UOHHBIX M300pakeHHI,
o0beAnHSIOIeN OIOYHYI0 SHTPOIIMIO, CTAHOAPTHOE OTKJIOHEHHE U MOKa3aTeslb
cpeaneit aeBuanun (ADP) a4 onjeHKH Ka4ecTBa U yJIydllleHHs] KoHTpacTa [2].

¢ IIpenyoxeH Moaxo/ K reHepald CHHTETUYECKUX JaHHBIX HA OCHOBE METPUKU
BIE, mnozBossonmii co3gaBaTh HWH(OPMATUBHBIE OOpa3lbl M TIOBHIIIATH
TOYHOCTH KJIACCU(DUKAIIMY NP KJIACCOBOM aucOanaHce [3].

e Pazpaborana wmopenp SlantNet — komnaktHas CNN-apxutekTypa
HaKJIOHHBIMH TapMOHHUYECKMMH CBEPTKaMH, oOecrieunBaioniast 3¢hdeKkTHBHOe
U3BJICUEHUE HAIPABJEHHBIX MPU3HAKOB U BBICOKYI0 TOYHOCTh IpPU HU3KOHN
BBIUMCIUTEIIbHON Harpyske [4].
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