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Relevance of the Research

Object detection is identifying and localizing objects within images or video frames, typi-
cally marked by bounding boxes indicating the location and class of detected objects (Fig-
ure 1 illustrates an example of object detection output). Accurate object detection is critical
across many practical domains, impacting safety, efficiency, and security. In Autonomous
Vehicles, object detection supports functionalities including collision avoidance, pedestrian
detection, lane identification, and traffic sign recognition [1]. In Unmanned Aerial Vehi-
cles (UAV) systems, object detection enables route planning, obstacle avoidance, and target
monitoring [2]. Accurate detection and identification of wildlife species in automated mon-
itoring systems facilitate improved ecological monitoring, conservation efforts, and anti-
poaching initiatives [3]. In smart-city surveillance, object detection improves urban safety
through better monitoring traffic incidents, crime detection, and public safety management
[4]. In industrial inspection systems, object detection supports critical tasks such as defect
detection, quality assurance, and safety inspections in industrial environments [5].

Figure 1: Example of an object detection output.

These systems utilized two types of imaging technologies: Red Green Blue (RGB) visi-
ble and Thermal Infrared (TIR) cameras. RGB cameras capture visible light across the red,
green, and blue spectrum, providing high-resolution color imagery with excellent detail in
well-lit conditions. TIR cameras detect heat signatures by capturing emitted infrared radi-
ation from objects, enabling object detection regardless of lighting conditions and allowing
temperature-based differentiation.

While current detection systems achieve human-level precision on benchmark datasets
and are widely deployed in commercial products due to deep-learning models that learn
visual patterns directly from data, they are typically optimized for clear-weather images with
good lighting conditions. Despite these strengths, these systems are significantly degraded
under adverse weather conditions. Numerous challenges persist that limit the reliability and
effectiveness of these systems in real-world applications. Studies have shown that state-of-
the-art (SOTA) detectors’ accuracy can drop by around 30-40% as haze density increases
[6].

RGB sensors are inherently dependent on ambient lighting and highly susceptible to
visual degradation caused by fog, haze, shadows, and nighttime darkness. Although TIR
sensors function effectively in darkness, through light fog, and under headlight glare, they
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Figure 2: Examples of object detection failures under bad weather conditions across differ-
ent imaging modalities.

suffer from inherent limitations, including low contrast, weak edge definition, and sensor
noise that complicate accurate object detection.

Even thermal imaging, while robust in low-visibility scenarios, can be compromised by
severe atmospheric interference such as heavy fog or haze, which reduces contrast and edge
sharpness, further impairing detection accuracy [7]. Thermal video introduces additional
complications, including motion blur and camera jitter, making object detection even more
challenging in dynamic environments where temporal consistency becomes critical for re-
liable performance (see Figure 2 for examples of such failures).

These detection failures translate directly into real-world harms with significant conse-
quences. When object detection systems fail due to environmental degradations such as fog,
haze, poor illumination, or occlusions, critical image features become obscured, resulting
in missed detections or misclassifications that can have severe implications.

• Road safety reports by the United States (U.S.) Federal Highway Administration and
the National Highway Traffic Safety Administration indicate that low-visibility con-
ditions, including fog, haze, and nighttime driving, contribute to a disproportionate
number of fatal crashes. Although these conditions account for a small percentage of
total driving exposure, they collectively account for nearly 50% of all traffic fatalities
in the U.S. [8]. The increased risk results from reduced driver awareness, delayed
reaction times, and reduced effectiveness of vehicle safety systems. Studies further
illustrate that the effectiveness of autonomous braking systems can be reduced by
30% to 80% when visibility is reduced due to severe fog conditions, significantly
narrowing reaction times and increasing collision risks [9].

• Surveillance systems at fixed locations also experience severe impairments under low
visibility conditions. For instance, camera-basedmotion detection systems frequently
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generate false alarms triggered by fog, dust, and insects. According to U.S. policing
studies, false alarm rates for burglar alarm dispatches range from 94% to 98%, plac-
ing unnecessary burdens on law enforcement resources [10]. Furthermore, criminals
exploit visibility impairments, with analyses indicating that approximately 50% of
residential burglaries occur during nighttime or under low visibility when RGB cam-
era systems demonstrate the lowest reliability [11].

• Wildlife conservation efforts are similarly impacted, as around 80% of unauthorized
wildlife hunting incidents occur during nighttime or under dense atmospheric haze
[12]. Although drone surveillance provides crucial monitoring capabilities, aerial
operations frequently encounter significant disruptions from fog and dust, limiting
operational hours substantially. For example, a U.S. border-security audit showed
that visibility restrictions kept unmanned aircraft airborne for about 22% of their
scheduled hours [13].

• Aviation safety andmilitary operations routinely face ”degraded visual environments”,
including conditions induced by fog, dust, and smoke. According to U.S. Army safety
analyses, disorientation or obstacle collisions account for approximately 24% of he-
licopter crashes and 44% of fatalities. Additionally, commercial airports face oper-
ational disruptions due to fog, with major airports operating under instrument flight
rules between 15% to 23% of annual operational hours, incurring significant finan-
cial costs due to delays and reinforcing the critical need for effective visual enhance-
ment solutions [14].

Figure 3: Impact of EnhancementMethods on Object Detection for RGB and TIR Imagery.

Several promising methodological approaches have emerged to address the challenges
of reliable object detection under adverse conditions. Image dehazing represents a foun-
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dational approach to improving visibility in degraded visual conditions by removing atmo-
spheric interference such as haze or fog from images (see Figure 3 (a)). This technique ad-
dresses the significant impairment of computer vision algorithms caused by reduced visibil-
ity, contrast, and detail clarity in adverse weather. Recent deep learning-based approaches,
such as DMPHN [15] and AOD-Net [16], demonstrate considerable advancement by auto-
matically learning important features from data. However, these methods face limitations
in generalization capability across varying real-world conditions and often struggle with
complex backgrounds or heavy atmospheric degradation.

Similarly, TIR dehazing addresses the unique degradation patterns affecting thermal
imagery in adverse weather conditions. While thermal cameras offer inherent advantages
in low-light conditions, they remain susceptible to quality reduction from heavy atmospheric
interference. Thermal images experience distinct degradation characteristics, including di-
minished contrast, edge blurring, and decreased clarity resulting from atmospheric scatter-
ing and absorption (see Figure 3 (b)). Contemporary approaches leverage Convolutional
Neural Networks (CNN) to enhance thermal image quality [17]. However, significant chal-
lenges persist regarding limited dataset availability, the fidelity of synthetic data generation,
and model adaptability across diverse thermal imaging systems with varying specifications.

General TIE techniques aim to improve the overall quality and interpretability of ther-
mal imagery by addressing common challenges, including low contrast, detail obscuration,
ghosting effects from overlapping thermal radiation, and inconsistent sensor characteristics
(see Figure 3 (c)). Recent approaches, including GAN-based approaches and CNN archi-
tectures [18], [19], have advanced image quality considerably but continue to face gener-
alization difficulties in complex scenarios, particularly those involving reflective materials
and ambiguous thermal patterns.

Thermal video enhancement extends beyond static image processing by addressing the
temporal characteristics inherent to thermal video data. This introduces additional com-
plexities, such as motion blur, temporal inconsistencies, rapid scene dynamics, and vari-
ability in sensor responses over time (see Figure 3 (d)). Methods that leverage temporal
context encounter significant challenges in effectively handling non-rigid motion and com-
plex thermal variations across frames. These temporal artifacts and inconsistencies severely
undermine object detection performance, leading to unreliable detections, increased false
positives, and missed targets, particularly in dynamic environments where consistent and
accurate detection is essential.

Thermal image colorization represents a transformative approach to bridging the gap
between TIR and RGB domains by addressing the inherent lack of color information and
typically low contrast with unclear object boundaries in thermal imagery. TIR to RGB col-
orization is the process of transforming a single-channel TIR image into a three-channel
color image that corresponds to visible-spectrum images. This process aims to generate re-
alistic textures, colors, and visual details that would be present if the scene were captured by
an RGB camera under favorable lighting conditions, as illustrated in Figure 3 (e). Colorizing
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thermal images enhances both human interpretability and compatibility with RGB-trained
models. It provides a more intuitive visual representation and allows existing RGB-based
algorithms to be applied to thermal data without extensive retraining. Recent research has
explored supervised and unsupervised deep learning frameworks, including CycleGAN [20]
and U-GAT-IT [21], to translate thermal imagery into colored RGB representations. These
techniques, however, encounter significant challenges including semantic distortions, incon-
sistent preservation of critical details, temporal instability in video sequences, and subopti-
mal performance on small objects, making accurate and consistent translation from thermal
to visible spectrum while maintaining semantic integrity a complex research challenge, par-
ticularly for applications requiring high precision such as autonomous driving systems.

Given these substantial and persistent challenges, there remains a critical need for in-
novative approaches to enhance object detection systems’ reliability under adverse weather
and low-visibility conditions. This thesis addresses these challenges by proposing novel
deep-learning methodologies tailored to improve image and video quality in visually de-
graded environments. In particular, we concentrate on advanced image dehazing methods
that effectively mitigate atmospheric interference in RGB and TIR modalities. Further-
more, we investigate specialized enhancement techniques for thermal images and videos,
employing recent advancements in neural architectures to handle unique degradations such
as low contrast, edge ambiguity, and temporal inconsistencies. Finally, this work explores
TIR-to-RGB colorization methods, bridging the gap between these imaging modalities to
leverage RGB-based algorithms without extensive retraining, thus significantly improving
object detection accuracy and reliability across practical, real-world scenarios.

Challenges of Object Detection

Reliable object detection remains challenging due to the inherent limitations and dis-
tinct vulnerabilities associated with different imaging modalities when operating in adverse
environmental conditions. While detection technologies are increasingly accurate in con-
trolled or optimal conditions, their performance rapidly deteriorates when facing real-world
scenarios involving degraded visual environments.

Despite RGB imaging widespread use, RGB-based detection methods inherently de-
pend on ambient illumination and visibility conditions. Adverse scenarios such as fog, haze,
heavy shadows, nighttime darkness, or noise introduced by bad weather significantly de-
grade RGB image quality, resulting in reduced contrast and loss of fine details critical for
accurate detection. Consequently, detection reliability is severely affected, leading to fre-
quent object mislocalization and misclassification. Furthermore, as most deep-learning de-
tectors are trained predominantly on clear-weather images, their performance in challenging
conditions is often compromised, highlighting the need for alternative imaging modalities
that are more resilient to environmental impairments.

TIR imaging offers advantages for detection tasks by capturing emitted radiation rather
than reflected light, providing resilience in varied lighting conditions. However, adoption is
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limited by several key challenges: domain shift from RGB data requiring specialized model
training, as visible-spectrum trained models struggle with the fundamentally different visual
features and contrast patterns in thermal data. Low contrast and blurred edges significantly
reduce the detail visibility needed for accurate object detection, while sensor and spec-
tral variability across different thermal imaging systems complicates model generalization
across deployments. Atmospheric degradation from fog or haze affects image quality despite
TIR’s relative robustness, reducing contrast and blurring edges critical for detection accu-
racy. Additionally, reflection artifacts from surfaces like metal and glass create misleading
contours that confuse detection algorithms. In video applications, motion blur, camera in-
stability, and temporal noise accumulation further compromise detection consistency. These
combined challenges significantly affect detection reliability in critical applications, requir-
ing advanced enhancement techniques to ensure consistent performance across challenging
operational environments.

The aim of the Work

The aim of this thesis is to address the significant challenges posed by adverse weather con-
ditions on object detection systems, developing accurate deep learning methodologies tai-
lored to overcome these issues. The proposed approaches aim to surpass existing (SOTA)
methods, achieving superior performance across multiple benchmark datasets and real-
world scenarios. To accomplish these objectives, the thesis focuses on the following tech-
nical tasks:

1. Develop dehazing frameworks explicitly designed for RGB and TIR images.

2. Develop thermal image and video enhancement networks.

3. Develop a TIR-to-RGB colorization pipeline capable of translating thermal images
into visually intuitive RGB representations.

4. Conduct meticulous evaluations of the proposed frameworks, assessing their perfor-
mance using key metrics such as detection accuracy and generalization capability.

The practical significance of the work

The methodologies proposed in this thesis form a unified enhancement framework that
improves visual clarity and cross-modal consistency in RGB and TIR imagery. As a result,
the research has broad applicability across a range of safety-critical and high-value domains:

• Autonomous Driving and Advanced Driver-Assistance Systems enhance visibil-
ity in fog, haze, and nighttime conditions, enabling safer navigation and more reliable
detection of pedestrians, vehicles, and road signs.

• UAV-Based Wildlife Monitoring and Anti-Poaching Systems facilitate reliable
detection of animals and humans in dense forests or nighttime conditions, strength-
ening conservation efforts and UAV-based patrolling.
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• Search and Rescue Operations in Disaster Environments improve visibility and
consistency across video frames, enhancing detection of survivors and obstacles dur-
ing UAV-assisted missions.

• Medical Imaging and Computer-Assisted Diagnostics enhance contrast and sup-
press distortions in thermal medical images, facilitating early disease detection in
applications like breast thermography and skin diagnostics.

The methods of investigation

In this thesis, we have used a wide range of approaches from different fields, including signal
processing, machine learning, deep learning, and related fields. The Python programming
language and its associated packages were used to train deep neural networks, process data,
and design algorithms. Previous related results also served as a basis for this work.

Publications

All results are new and have been published in international and local journals, and presented
at international conferences. The main findings of this thesis have been published in six
scientific articles in various journals. The list of these articles is provided at the end of the
Synopsis.

Figure 4: Overall Workflow of the Thesis Framework.

Structure of the Thesis

The dissertation consists of 7 chapters and a list of used literature. The thesis is written in
150 pages and has 247 literature references. The thesis contains 45 figures and 18 tables.

• Chapter 1 introduces the research context, clearly outlining existing limitations in
object detection under adverse weather conditions. It articulates the research ques-
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tions and objectives and highlights the key novel contributions made throughout the
thesis.

• Chapter 2 aims to develop an innovative deep-learning solution to enhance object
detection performance in challenging weather conditions, particularly addressing the
significant degradation caused by haze and fog. Despite achieving considerable suc-
cess, current SOTA approaches often struggle with non-homogeneous haze, fail to
preserve natural color properties, and perform poorly on small training datasets. Most
critically, these methods are not optimized for downstream computer vision tasks
such as object detection, which is essential for real-world applications.

Figure 5: Overall architecture of EOD-Net.

To overcome these challenges, this chapter proposes EOD-Net, a novel end-to-end
RGB image dehazing architecture designed to improve object detection in hazy en-
vironments. Overall pipeline of the EOD-Net is presented in Figure 5. Key inno-
vations include a dual-branch dehazing system with a Gray-Level Weighted Fusion
module and a specialized enhancement Attention-Based Gamma Correction module
for color restoration, effectively addressing the limitations of previous approaches.
Comprehensive evaluations on synthetic (I-Haze [22], O-Haze [23], NH-Haze2 [24])
and real-world hazy datasets demonstrate superior performance over existing SOTA
methods across multiple image quality metrics (LPIPS [25], PSNR, SSIM [26],
FSIM [27], VIF [28]). Furthermore, practical testing on traffic surveillance footage
significantly improves object detection performance as shown in Figure 6. Unpro-
cessed hazy images allow detection of only 3-4% of vehicles from all present ve-
hicles, while EOD-Net enables detection of approximately 40% of all vehicles in
heavily hazed environments. This substantial improvement demonstrates EOD-Net’s
effectiveness for real-world applications where visual clarity directly impacts safety
and operational decisions.

• Chapter 3 addresses thermal image dehazing under severe atmospheric degradation
such as haze, smoke, and fog, which obscure details, lower contrast, and degrade
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Figure 6: Vehicle detection results compared with other SOTA dehazing methods.

downstream performance. Current SOTA methods work reasonably well on thermal
images captured in visible-light environments but still struggle under these adverse
conditions. To overcome these limitations, we propose MTIE-Net, a Mamba-based
thermal image dehazing framework built on the Enhancement and Denoising State
SpaceModel. By integrating CNNs with state-spacemodeling, the network performs
joint denoising and enhancement, restoring visibility while preserving critical edges
necessary for reliable object detection. Extensive experiments on the M3DF dataset
[29] show that MTIE-Net outperforms both traditional and deep-learning baselines
across PSNR and SSIM [26], EME, BDIM, and MDIMTE [30]. Table 1 presents
the quantitative results on the M3FD dataset for object detection evaluation. Nearly
all enhancement methods significantly improved detection performance compared
to using only the original infrared images. Our proposed MTIE-Net outperformed
other methods in terms of detection mean Average Precision (AP), achieving up to
a 25% improvement in detection accuracy compared to when using artificially gen-
erated challenging hazy infrared images, and around 8% improvement over the best
competing enhancement method under challenging conditions. Furthermore, it gen-
eralizes well to real-world domains, making it practical for surveillance and other
safety-critical applications where object-detection performance is essential.

Table 1: Object detection evaluation (mAP0.5) under adverse weather conditions.
Measure Day Overcast Night Challenge mAP0.5

Hazy Infrared 0.718 0.721 0.620 0.618 0.710
Original Infrared 0.806 0.798 0.712 0.739 0.786
Visible 0.827 0.789 0.764 0.759 0.758
AGCCPF 0.811 0.799 0.739 0.748 0.789
BBCNN 0.815 0.805 0.743 0.747 0.790
IE-CGAN 0.816 0.808 0.768 0.754 0.791
WTHE 0.818 0.810 0.785 0.783 0.792
MTIE-Net 0.828 0.819 0.849 0.871 0.812
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• Chapter 4 aims to develop an innovative physics-guided framework for thermal im-
age enhancement that overcomes inherent challenges such as low contrast, ghosting
artifacts, blurred edges, and sensor noise, all impairing downstream vision tasks. Ex-
isting SOTA techniques can boost contrast but often amplify noise and leave ghost
artifacts, limiting their generalization across domains. To address these challenges,
this chapter introduces PB-IID-Net. Figure 7 illustrates the architecture of PB-IID-
Net.

Figure 7: Overall architecture of PB-IID-Net.

The network leverages physics principles specific to thermal imagery by applying the
extended Stefan-Boltzmann law in its decomposition module to separate temperature
and emissivity components. It then removes ghosting through an artifact-suppression
block and applies adaptive fusion with pixel-wise gamma correction, restoring visibil-
ity while preserving fine structural details. Extensive tests on five datasets (LTIR [31],
CVC-14 [32], Autonomous Vehicles [33], Solar Panel [34], and Breast [35]) show
that PB-IID-Net outperforms traditional and learning-based baselines across the non-
reference metrics EME, BDIM, MDIMTE, BRISQUE, and NIQE [30]. PB-IID-Net
achieves superior enhancement across different types of infrared images (near, mid,
and far infrared), consistently outperforming other methods with notable improve-
ments in object detection metrics across all spectra.

Table 2: Detection performance (mAP) on various inputs and models

Measure Orig.
NIR

Orig.
MIR

Orig.
FIR

WTHE
on NIR

WTHE
on MIR

WTHE
on FIR

PB-IID-Net
on NIR
(k = 2)

PB-IID-Net
on MIR
(k = 2)

PB-IID-Net
on FIR
(k = 2)

PB-IID-Net
on NIR
(k = 4)

PB-IID-Net
on MIR
(k = 4)

PB-IID-Net
on FIR
(k = 4)

mAP50 ↑ 51.9 56.6 48.2 53.1 58.4 49.9 60.5 63.8 55.9 59.7 63.2 56.4
mAP75 ↑ 14.8 20.1 16.3 15.3 22.1 18.5 19.9 27.5 20.7 18.4 27.1 21.3
mAP50:95 ↑ 22.6 25.1 22.5 23.5 26.8 24.1 28.4 31.5 27.7 26.9 30.9 29.1

With spectrum-specific optimal empirical parameters (K=2 for NIR and MIR, K=4
for FIR), the model demonstrated significant performance in the MIR spectrum, rep-
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resenting up to 5.4% higher mAP0.5 and 4.7% higher mAP0.5:0.95 compared to
other enhancement techniques, as shown in Table 2.

• Chapter 5 focuses on designing a Mamba-based framework for thermal video en-
hancement that addresses core issues such as low contrast, motion blur, sensor noise,
and frame-to-frame inconsistencies that hinder object tracking and detection. Exist-
ing SOTAmethods often enhance contrast at the cost of introducing temporal flicker,
misaligned motion, and residual noise, which limits their reliability in real-world sce-
narios. This chapter proposes TVEMamba, which tackles the aforementioned chal-
lenges in thermal videos. First, sharpening and denoising the network improve each
frame through denoising and sharpening. Next, the blur-resistant motion estimation
network generates blur-resistant optical-flow maps from consecutive frames to cap-
ture complex motion patterns. Finally, the motion deblurring network combines the
aligned frames, creating a temporally coherent, high-clarity video without motion-
induced artifacts while preserving fine spatial detail. Extensive evaluations on five
datasets (BIRDSAI [36], FLIR [37], CAMEL [38], Autonomous Vehicles [33], and
Solar Panels [34]) demonstrate that TVEMamba outperforms SOTAmethods across
several non-reference quality metrics: EME, BDIM, DMTE,MDIMTE, LGTA [30],
and BIE [39]. Additionally, as shown in Table 3, it boosts object detection accuracy
bymore than 6% relative to the original degraded wildlife monitoring footage. These
improvements highlight the practical advantages of TVEMamba for applications in-
volving severely deteriorated video quality. This makes the method particularly valu-
able for wildlife monitoring, autonomous driving systems, and UAV-based military
operations, where precise object detection is essential.

Table 3: Object detection performance on the BIRDSAI dataset. YOLO1 and Hyper-
YOLO1 models are trained on original datasets, and YOLO2 and Hyper-YOLO2 models
are trained on enhanced datasets produced by the TVEMamba framework.
Classes 2 3 2

Architecture YOLO1 YOLO2 YOLO1 YOLO2 Hyper-YOLO1 Hyper-YOLO2

mAP0.5 38.1 44.2 25.0 29.7 38.0 43.9
mAP0.5:0.9 13.2 16.8 9.3 10.9 12.9 16.4

• Chapter 6 aims to bridge the gap between TIR and RGB imaging modalities through
a novel colorization framework that transforms thermal imagery into visually realistic
RGB representations. This enhances autonomous driving capabilities in challenging
low-visibility conditions and enables applicability for RGB-based object detection.
Existing thermal-to-visible translation methods face significant limitations, including
semantic distortions, temporal inconsistency across video frames, poor performance
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on small objects, and insufficient detail preservation in complex textures. These chal-
lenges become particularly pronounced when translating objects with minimal ther-
mal differences, such as buildings and trees. These challenges substantially reduce
their effectiveness for critical downstream applications such as object detection in au-
tonomous driving systems. This chapter proposes FWGAN, a frame-based Weber-
law-driven Generative Adversarial Network, as shown in Figure 8.

Figure 8: Overall Architecture of FWGAN for Thermal Image Translation and Analysis.

This innovative thermal-to-visible translation network addresses current limitations
through specialized components: a Preprocessing Module that enhances sharpness
and reduces noise, a Frame-based Deep Feature Extractor Module that integrates
complementary features from pre-trained backbones, and a Frame Information Up-
date mechanism that ensures temporal consistency across video sequences. Integrat-
ing extended Weber Contrast Enhancement-driven edge detection improves fine de-
tail preservation when minimal temperature differences exist. Evaluations on FLIR
[37] and KAIST [40] datasets demonstrate FWGAN’s superior performance across
multiple image quality metrics, including NIQE, BRISQUE, and PIQE [30] for im-
age naturalness assessment. Most critically, compared to existing SOTA colorization
techniques, FWGAN enhances object detection accuracy from 61% to 63%, con-
firming its potential for integration into autonomous driving systems operating in
adverse visibility conditions.

• Chapter 7 concludes the thesis by summarizing the main contributions, discussing
current limitations, and proposing potential future research on robust multi-modal
perception in challenging environmental conditions.

Figure 4 illustrates the logical progression of this thesis, demonstrating how each chapter
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systematically contributes to a comprehensive framework for robust object detection under
challenging visibility conditions.

List of author’s publications

The obtained results were reported in several international and local scientific workshops:

1. S. Hovhannisyan et al., ”AED-Net: A single image dehazing”, IEEE Access, 10,
12465-12474, 2022.

2. S. Hovhannisyan et al., ”EOD-Net: enhancing object detection in challengingweather
conditions using an innovative end-to-end dehazing network”, In 2023 Twelfth Inter-
national Conference on Image Processing Theory, Tools and Applications (IPTA)
(pp. 1-6), IEEE, October 2023.

3. S. Hovhannisyan, ”Mamba-based Thermal Image Dehazing”, Mathematical Prob-
lems of Computer Science, 62, 126-144, 2024.

4. S. Hovhannisyan et al., ”Thermal Video Enhancement Mamba: A Novel Approach
to Thermal Video Enhancement for Real-World Applications”, Information, 16(2),
125, 2025.

References
[1] R.Wang, Z.Wang, Z. Xu, et al., “A real-time object detector for autonomous vehicles

based on yolov4,” Computational Intelligence and Neuroscience, vol. 2021, no. 1,
p. 9 218 137, 2021.

[2] Z. Cao, L. Kooistra, W. Wang, L. Guo, and J. Valente, “Real-time object detection
based on uav remote sensing: A systematic literature review,” Drones, vol. 7, no. 10,
p. 620, 2023.

[3] L. Chen, G. Li, S. Zhang, W. Mao, and M. Zhang, “Yolo-sag: An improved wildlife
object detection algorithm based on yolov8n,”Ecological Informatics, vol. 83, p. 102 791,
2024.

[4] Y. Li, Y. Huang, and Q. Tao, “Improving real-time object detection in internet-of-
things smart city traffic with yolov8-dsaf method,” Scientific reports, vol. 14, no. 1,
p. 17 235, 2024.

[5] H. M. Ahmad and A. Rahimi, “Deep learning methods for object detection in smart
manufacturing: A survey,” Journal of Manufacturing Systems, vol. 64, pp. 181–196,
2022.

[6] Z. Liu, Y. He, C. Wang, and R. Song, “Analysis of the influence of foggy weather
environment on the detection effect of machine vision obstacles,” Sensors, vol. 20,
no. 2, p. 349, 2020.

15



[7] F. Erlenbusch, C.Merkt, B. de Oliveira, et al., “Thermal infrared single image dehaz-
ing and blind image quality assessment,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2023, pp. 459–469.

[8] Association for the Advancement of Automotive Medicine. “Nighttime driving.”
Accessed: 2025-05-07, Association for the Advancement of Automotive Medicine
(AAAM). (Jan. 2021), [Online]. Available: https://www.aaam.org/nighttime-
driving/.

[9] A. Wulfeck. “Vehicle safety systems struggle in bad weather, aaa finds.” Accessed:
2025-05-10, FOXWeather. (2021), [Online]. Available: https://www.foxweather.
com/weather-news/vehicle-safety-systems-struggle.

[10] Fairfax County Police Department. “False alarm security systems.” Accessed: 2025-
05-09, FairfaxCounty. (2025), [Online]. Available: https://www.fairfaxcounty.
gov/police/ServicesAH/FalseAlarmSecuritySystems.

[11] J. Knott. “What time do most burglaries occur?” Accessed: 2025-05-10, Pro CE.
(Nov. 2, 2023), [Online]. Available: https://www.cepro.com/news/what-
time-do-most-burglaries-occur/118261/.

[12] J. Worland. “Drones are helping catch poachers operating under cover of darkness.”
Accessed: 2025-05-07, TIME. (May 17, 2018), [Online]. Available: https : / /
time.com/5279322/drones-poaching-air-shepherd/.

[13] Office of Inspector General, U.S. Department of Homeland Security, “Cbp drones
are dubious achievers,” U.S. Department of Homeland Security, Washington, DC,
Tech. Rep., 2015.

[14] U.S. Army Combat Readiness Center, “Dve: The varying degree,” Flightfax, May
2022.

[15] S. D. Das and S. Dutta, “Fast deep multi-patch hierarchical network for nonhomo-
geneous image dehazing,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition workshops, 2020, pp. 482–483.

[16] B. Li, X. Peng, Z. Wang, J. Xu, and D. Feng, “Aod-net: All-in-one dehazing net-
work,” in Proceedings of the IEEE international conference on computer vision, 2017,
pp. 4770–4778.

[17] R. Soundrapandiyan, S. C. Satapathy, C. M. PVSSR, and N. G. Nhu, “A compre-
hensive survey on image enhancement techniques with special emphasis on infrared
images,” Multimedia Tools and Applications, vol. 81, no. 7, pp. 9045–9077, 2022.

[18] M. A. Marnissi and A. Fathallah, “Gan-based vision transformer for high-quality
thermal image enhancement,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2023, pp. 817–825.

16



[19] K. Lee, J. Lee, J. Lee, S. Hwang, and S. Lee, “Brightness-based convolutional neural
network for thermal image enhancement,” Ieee Access, vol. 5, pp. 26 867–26 879,
2017.

[20] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation
using cycle-consistent adversarial networks,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2223–2232.

[21] J. Kim,M. Kim, H. Kang, and K. Lee, “U-gat-it: Unsupervised generative attentional
networks with adaptive layer-instance normalization for image-to-image translation,”
arXiv preprint arXiv:1907.10830, 2019.

[22] C. Ancuti, C. O. Ancuti, R. Timofte, and C. De Vleeschouwer, “I-haze: A dehaz-
ing benchmark with real hazy and haze-free indoor images,” in Advanced Concepts
for Intelligent Vision Systems: 19th International Conference, ACIVS 2018, Poitiers,
France, September 24–27, 2018, Proceedings 19, Springer, 2018, pp. 620–631.

[23] C. O. Ancuti, C. Ancuti, R. Timofte, and C. De Vleeschouwer, “O-haze: A dehazing
benchmark with real hazy and haze-free outdoor images,” in Proceedings of the IEEE
conference on computer vision and pattern recognitionworkshops, 2018, pp. 754–762.

[24] C. O. Ancuti, C. Ancuti, and R. Timofte, “Nh-haze: An image dehazing benchmark
with non-homogeneous hazy and haze-free images,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition workshops, 2020, pp. 444–
445.

[25] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable
effectiveness of deep features as a perceptual metric,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 586–595.

[26] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assess-
ment: From error visibility to structural similarity,” IEEE transactions on image pro-
cessing, vol. 13, no. 4, pp. 600–612, 2004.

[27] L. Zhang, L. Zhang, X. Mou, and D. Zhang, “Fsim: A feature similarity index for
image quality assessment,” IEEE transactions on Image Processing, vol. 20, no. 8,
pp. 2378–2386, 2011.

[28] H. R. Sheikh and A. C. Bovik, “Image information and visual quality,” IEEE Trans-
actions on image processing, vol. 15, no. 2, pp. 430–444, 2006.

[29] J. Liu, X. Fan, Z. Huang, et al., “Target-aware dual adversarial learning and a multi-
scenario multi-modality benchmark to fuse infrared and visible for object detection,”
in Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, 2022, pp. 5802–5811.

17



[30] S. Agaian, H. Ayunts, T. Trongtirakul, and S. Hovhannisyan, “A new method for
judging thermal image quality with applications,” Signal Processing, vol. 229, p. 109 769,
2025.

[31] A. Berg, J. Ahlberg, and M. Felsberg, “A thermal object tracking benchmark,” in
Advanced Video and Signal Based Surveillance (AVSS), 2015 12th IEEE International
Conference on, 2015.

[32] A. González, Z. Fang, Y. Socarras, et al., “Pedestrian detection at day/night time
with visible and fir cameras: A comparison,” Sensors, vol. 16, no. 6, p. 820, 2016.

[33] K. Takumi, K. Watanabe, Q. Ha, A. Tejero-De-Pablos, Y. Ushiku, and T. Harada,
“Multispectral object detection for autonomous vehicles,” in Proceedings of the on
Thematic Workshops of ACM Multimedia 2017, 2017, pp. 35–43.

[34] E. Alfaro-Mejía, H. Loaiza-Correa, E. Franco-Mejía, A. D. Restrepo-Girón, and
S. E. Nope-Rodríguez, “Dataset for recognition of snail trails and hot spot failures
in monocrystalline si solar panels,” Data in brief, vol. 26, p. 104 441, 2019.

[35] L. Silva, D. Saade, G. Sequeiros, et al., “A new database for breast research with
infrared image,” Journal of Medical Imaging and Health Informatics, vol. 4, no. 1,
pp. 92–100, 2014.

[36] E. Bondi, R. Jain, P. Aggrawal, et al., “Birdsai: A dataset for detection and tracking
in aerial thermal infrared videos,” in Proceedings of the IEEE/CVFWinter conference
on applications of computer vision, 2020, pp. 1747–1756.

[37] deepnewbie, Flir thermal images dataset, Accessed: 2024-09-21, 2024. [Online].
Available: https : / / www . kaggle . com / datasets / deepnewbie / flir -
thermal-images-dataset.

[38] E. Gebhardt and M. Wolf, “Camel dataset for visual and thermal infrared multiple
object detection and tracking,” in 2018 15th IEEE international conference on ad-
vanced video and signal based surveillance (AVSS), IEEE, 2018, pp. 1–6.

[39] H. Ayunts, A. Grigoryan, and S. Agaian, “Novel entropy for enhanced thermal imag-
ing and uncertainty quantification,” Entropy, vol. 26, no. 5, p. 374, 2024.

[40] S. Hwang, J. Park, N. Kim, Y. Choi, and I. So Kweon, “Multispectral pedestrian
detection: Benchmark dataset and baseline,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2015, pp. 1037–1045.

18



 

 

 

 



• 

• 

• 



Заключение 

Оганнисян Саргис Андреасович 

Обнаружение объектов в неблагоприятных погодных условиях с использованием 

видимых и тепловых изображений и новых методов глубокого обучения 

Работа посвящена улучшению систем обнаружения объектов и повышению стабильности 

их работы, особенно в условиях плохой видимости (туман, дым, дымка, низкая 

освещенность). С этой целью разработаны новые методы глубокого обучения, которые 

используют как видимые (RGB), так и тепловые (TIR) изображения. Проведенные оценки 

подтверждают эффективность разработанных решений и показывают их потенциал в 

реальных прикладных задачах. 

Основные цели работы: 

1. Разработать новые сети глубокого обучения для удаления тумана или дымки как с 

видимых (RGB), так и с тепловых (TIR) изображений. 

2. Разработать сети глубокого обучения для улучшения качества тепловых 

изображений и видео (повышение контрастности, снижение шума), с целью 

сделать обнаружение объектов более точным и стабильным. 

3. Разработать новую сеть глубокого обучения для преобразования (колоризации) 

тепловых изображений в видимые (RGB) цветные изображения. Это позволит 

использовать уже существующие методы обнаружения объектов, избегая 

необходимости их переобучения на тепловых изображениях. 

4. Провести детальную оценку эффективности предложенных решений (в частности, 

точности обнаружения) с использованием различных наборов данных (как 

эталонных, так и полученных в реальных условиях). 

В первой главе представляется область исследования, объясняется, почему сложно 

обнаруживать объекты в плохую погоду, ставятся задачи и цели работы и подчеркиваются 

основные новые подходы диссертации. 

Вторая глава посвящена решению для повышения эффективности обнаружения объектов 

в условиях плотной дымки посредством новой сети глубокого обучения EOD-Net. 

Результаты показали значительное улучшение эффективности обнаружения с 3-4% до 

примерно 40%. 

В третьей главе предлагается новая сеть MTIE-Net (основанная на моделях "Мамба") для 

удаления дымки с тепловых изображений. Этот метод улучшает точность обнаружения на 

25% по сравнению с необработанными тепловыми изображениями. 

В четвертой главе представляется метод улучшения качества тепловых изображений 

(частично основанный на физическом законе) посредством сети PB-IID-Net. Это решение 

способствует повышению эффективности обнаружения объектов и применимо для любого 

диапазона инфракрасного спектра. 

В пятой главе предлагается сеть TVEMamba (основанная на моделях "Мамба") для 

улучшения качества тепловых видео. Она повышает точность обнаружения объектов 

примерно на 6%. 



В шестой главе разработана новая сеть FWGAN, посредством которой можно получать с 

тепловых изображений видимые (RGB) цветные изображения. Этот метод повышает 

точность обнаружения объектов с 61% до 63%. 

В седьмой главе подводятся итоги диссертации, отмечаются возможные направления 

дальнейших исследований, связанные с развитием визуальных систем, работающих в 

сложных условиях. 

Прикладное и научное значение работы 

Диссертационная работа имеет как значительное прикладное, так и научное значение. 

• Результаты работы позволяют значительно повысить надежность и безопасность 

систем обнаружения объектов в реальных приложениях (таких как автономный 

транспорт, системы наблюдения, поисково-спасательные работы), особенно в 

условиях плохой видимости и сложных погодных условиях. 

• Эффективность разработанных методов оценена в экспериментах, проведенных на 

различных наборах данных. Эти эксперименты показали, что они превосходят 

существующие передовые решения, обеспечивая более высокую точность и 

стабильность обнаружения объектов. 

• Полученные результаты и разработанные подходы могут послужить основой для 

развития ряда научных и прикладных дальнейших направлений, в частности, для 

дальнейшего улучшения обнаружения объектов путем одновременного 

использования видимых (RGB) и тепловых (TIR) изображений. 


