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Relevance of the Research

Object detection is identifying and localizing objects within images or video frames, typi-
cally marked by bounding boxes indicating the location and class of detected objects (Fig-
ure 1 illustrates an example of object detection output). Accurate object detection is critical
across many practical domains, impacting safety, efficiency, and security. In Autonomous
Vehicles, object detection supports functionalities including collision avoidance, pedestrian
detection, lane identification, and traffic sign recognition [1]. In Unmanned Aerial Vehi-
cles (UAV) systems, object detection enables route planning, obstacle avoidance, and target
monitoring [2]. Accurate detection and identification of wildlife species in automated mon-
itoring systems facilitate improved ecological monitoring, conservation efforts, and anti-
poaching initiatives [3]. In smart-city surveillance, object detection improves urban safety
through better monitoring traffic incidents, crime detection, and public safety management
[4]. In industrial inspection systems, object detection supports critical tasks such as defect
detection, quality assurance, and safety inspections in industrial environments [5].

Figure 1: Example of an object detection output.

These systems utilized two types of imaging technologies: Red Green Blue (RGB) visi-
ble and Thermal Infrared (TIR) cameras. RGB cameras capture visible light across the red,
green, and blue spectrum, providing high-resolution color imagery with excellent detail in
well-lit conditions. TIR cameras detect heat signatures by capturing emitted infrared radi-
ation from objects, enabling object detection regardless of lighting conditions and allowing
temperature-based differentiation.

While current detection systems achieve human-level precision on benchmark datasets
and are widely deployed in commercial products due to deep-learning models that learn
visual patterns directly from data, they are typically optimized for clear-weather images with
good lighting conditions. Despite these strengths, these systems are significantly degraded
under adverse weather conditions. Numerous challenges persist that limit the reliability and
effectiveness of these systems in real-world applications. Studies have shown that state-of -
the-art (SOTA) detectors’ accuracy can drop by around 30-40% as haze density increases
[6].

RGB sensors are inherently dependent on ambient lighting and highly susceptible to
visual degradation caused by fog, haze, shadows, and nighttime darkness. Although TIR
sensors function effectively in darkness, through light fog, and under headlight glare, they
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Figure 2: Examples of object detection failures under bad weather conditions across differ-
ent imaging modalities.

suffer from inherent limitations, including low contrast, weak edge definition, and sensor
noise that complicate accurate object detection.

Even thermal imaging, while robust in low-visibility scenarios, can be compromised by
severe atmospheric interference such as heavy fog or haze, which reduces contrast and edge
sharpness, further impairing detection accuracy [7]. Thermal video introduces additional
complications, including motion blur and camera jitter, making object detection even more
challenging in dynamic environments where temporal consistency becomes critical for re-
liable performance (see Figure 2 for examples of such failures).

These detection failures translate directly into real-world harms with significant conse-
quences. When object detection systems fail due to environmental degradations such as fog,
haze, poor illumination, or occlusions, critical image features become obscured, resulting
in missed detections or misclassifications that can have severe implications.

» Road safety reports by the United States (U.S.) Federal Highway Administration and
the National Highway Traffic Safety Administration indicate that low-visibility con-
ditions, including fog, haze, and nighttime driving, contribute to a disproportionate
number of fatal crashes. Although these conditions account for a small percentage of
total driving exposure, they collectively account for nearly 50 % of all traffic fatalities
in the U.S. [8]. The increased risk results from reduced driver awareness, delayed
reaction times, and reduced effectiveness of vehicle safety systems. Studies further
illustrate that the effectiveness of autonomous braking systems can be reduced by
30% to 80% when visibility is reduced due to severe fog conditions, significantly
narrowing reaction times and increasing collision risks [9].

* Surveillance systems at fixed locations also experience severe impairments under low
visibility conditions. For instance, camera-based motion detection systems frequently
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generate false alarms triggered by fog, dust, and insects. According to U.S. policing
studies, false alarm rates for burglar alarm dispatches range from 94 % to 98 %, plac-
ing unnecessary burdens on law enforcement resources [10]. Furthermore, criminals
exploit visibility impairments, with analyses indicating that approximately 50% of
residential burglaries occur during nighttime or under low visibility when RGB cam-
era systems demonstrate the lowest reliability [11].

» Wildlife conservation efforts are similarly impacted, as around 80% of unauthorized
wildlife hunting incidents occur during nighttime or under dense atmospheric haze
[12]. Although drone surveillance provides crucial monitoring capabilities, aerial
operations frequently encounter significant disruptions from fog and dust, limiting
operational hours substantially. For example, a U.S. border-security audit showed
that visibility restrictions kept unmanned aircraft airborne for about 22% of their
scheduled hours [13].

* Aviation safety and military operations routinely face “degraded visual environments”,
including conditions induced by fog, dust, and smoke. According to U.S. Army safety
analyses, disorientation or obstacle collisions account for approximately 24% of he-
licopter crashes and 44 % of fatalities. Additionally, commercial airports face oper-
ational disruptions due to fog, with major airports operating under instrument flight
rules between 15% to 23% of annual operational hours, incurring significant finan-
cial costs due to delays and reinforcing the critical need for effective visual enhance-
ment solutions [14].
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Figure 3: Impact of Enhancement Methods on Object Detection for RGB and TIR Imagery.

Several promising methodological approaches have emerged to address the challenges
of reliable object detection under adverse conditions. Image dehazing represents a foun-

5



dational approach to improving visibility in degraded visual conditions by removing atmo-
spheric interference such as haze or fog from images (see Figure 3 (a)). This technique ad-
dresses the significant impairment of computer vision algorithms caused by reduced visibil-
ity, contrast, and detail clarity in adverse weather. Recent deep learning-based approaches,
such as DMPHN [15] and AOD-Net [16], demonstrate considerable advancement by auto-
matically learning important features from data. However, these methods face limitations
in generalization capability across varying real-world conditions and often struggle with
complex backgrounds or heavy atmospheric degradation.

Similarly, TIR dehazing addresses the unique degradation patterns affecting thermal
imagery in adverse weather conditions. While thermal cameras offer inherent advantages
in low-light conditions, they remain susceptible to quality reduction from heavy atmospheric
interference. Thermal images experience distinct degradation characteristics, including di-
minished contrast, edge blurring, and decreased clarity resulting from atmospheric scatter-
ing and absorption (see Figure 3 (b)). Contemporary approaches leverage Convolutional
Neural Networks (CNN) to enhance thermal image quality [17]. However, significant chal-
lenges persist regarding limited dataset availability, the fidelity of synthetic data generation,
and model adaptability across diverse thermal imaging systems with varying specifications.

General TIE techniques aim to improve the overall quality and interpretability of ther-
mal imagery by addressing common challenges, including low contrast, detail obscuration,
ghosting effects from overlapping thermal radiation, and inconsistent sensor characteristics
(see Figure 3 (c)). Recent approaches, including GAN-based approaches and CNN archi-
tectures [18], [19], have advanced image quality considerably but continue to face gener-
alization difficulties in complex scenarios, particularly those involving reflective materials
and ambiguous thermal patterns.

Thermal video enhancement extends beyond static image processing by addressing the
temporal characteristics inherent to thermal video data. This introduces additional com-
plexities, such as motion blur, temporal inconsistencies, rapid scene dynamics, and vari-
ability in sensor responses over time (see Figure 3 (d)). Methods that leverage temporal
context encounter significant challenges in effectively handling non-rigid motion and com-
plex thermal variations across frames. These temporal artifacts and inconsistencies severely
undermine object detection performance, leading to unreliable detections, increased false
positives, and missed targets, particularly in dynamic environments where consistent and
accurate detection is essential.

Thermal image colorization represents a transformative approach to bridging the gap
between TIR and RGB domains by addressing the inherent lack of color information and
typically low contrast with unclear object boundaries in thermal imagery. TIR to RGB col-
orization is the process of transforming a single-channel TIR image into a three-channel
color image that corresponds to visible-spectrum images. This process aims to generate re-
alistic textures, colors, and visual details that would be present if the scene were captured by
an RGB camera under favorable lighting conditions, as illustrated in Figure 3 (e). Colorizing
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thermal images enhances both human interpretability and compatibility with RGB-trained
models. It provides a more intuitive visual representation and allows existing RGB-based
algorithms to be applied to thermal data without extensive retraining. Recent research has
explored supervised and unsupervised deep learning frameworks, including CycleGAN [20]
and U-GAT-IT [21], to translate thermal imagery into colored RGB representations. These
techniques, however, encounter significant challenges including semantic distortions, incon-
sistent preservation of critical details, temporal instability in video sequences, and subopti-
mal performance on small objects, making accurate and consistent translation from thermal
to visible spectrum while maintaining semantic integrity a complex research challenge, par-
ticularly for applications requiring high precision such as autonomous driving systems.

Given these substantial and persistent challenges, there remains a critical need for in-
novative approaches to enhance object detection systems’ reliability under adverse weather
and low-visibility conditions. This thesis addresses these challenges by proposing novel
deep-learning methodologies tailored to improve image and video quality in visually de-
graded environments. In particular, we concentrate on advanced image dehazing methods
that effectively mitigate atmospheric interference in RGB and TIR modalities. Further-
more, we investigate specialized enhancement techniques for thermal images and videos,
employing recent advancements in neural architectures to handle unique degradations such
as low contrast, edge ambiguity, and temporal inconsistencies. Finally, this work explores
TIR-to-RGB colorization methods, bridging the gap between these imaging modalities to
leverage RGB-based algorithms without extensive retraining, thus significantly improving
object detection accuracy and reliability across practical, real-world scenarios.

Challenges of Object Detection

Reliable object detection remains challenging due to the inherent limitations and dis-
tinct vulnerabilities associated with different imaging modalities when operating in adverse
environmental conditions. While detection technologies are increasingly accurate in con-
trolled or optimal conditions, their performance rapidly deteriorates when facing real-world
scenarios involving degraded visual environments.

Despite RGB imaging widespread use, RGB-based detection methods inherently de-
pend on ambient illumination and visibility conditions. Adverse scenarios such as fog, haze,
heavy shadows, nighttime darkness, or noise introduced by bad weather significantly de-
grade RGB image quality, resulting in reduced contrast and loss of fine details critical for
accurate detection. Consequently, detection reliability is severely affected, leading to fre-
quent object mislocalization and misclassification. Furthermore, as most deep-learning de-
tectors are trained predominantly on clear-weather images, their performance in challenging
conditions is often compromised, highlighting the need for alternative imaging modalities
that are more resilient to environmental impairments.

TIR imaging offers advantages for detection tasks by capturing emitted radiation rather
than reflected light, providing resilience in varied lighting conditions. However, adoption is



limited by several key challenges: domain shift from RGB data requiring specialized model
training, as visible-spectrum trained models struggle with the fundamentally different visual
features and contrast patterns in thermal data. Low contrast and blurred edges significantly
reduce the detail visibility needed for accurate object detection, while sensor and spec-
tral variability across different thermal imaging systems complicates model generalization
across deployments. Ammospheric degradation from fog or haze affects image quality despite
TIR’s relative robustness, reducing contrast and blurring edges critical for detection accu-
racy. Additionally, reflection artifacts from surfaces like metal and glass create misleading
contours that confuse detection algorithms. In video applications, motion blur, camera in-
stability, and temporal noise accumulation further compromise detection consistency. These
combined challenges significantly affect detection reliability in critical applications, requir-
ing advanced enhancement techniques to ensure consistent performance across challenging
operational environments.

The aim of the Work

The aim of this thesis is to address the significant challenges posed by adverse weather con-
ditions on object detection systems, developing accurate deep learning methodologies tai-
lored to overcome these issues. The proposed approaches aim to surpass existing (SOTA)
methods, achieving superior performance across multiple benchmark datasets and real-
world scenarios. To accomplish these objectives, the thesis focuses on the following tech-
nical tasks:

1. Develop dehazing frameworks explicitly designed for RGB and TIR images.
2. Develop thermal image and video enhancement networks.

3. Develop a TIR-to-RGB colorization pipeline capable of translating thermal images
into visually intuitive RGB representations.

4. Conduct meticulous evaluations of the proposed frameworks, assessing their perfor-
mance using key metrics such as detection accuracy and generalization capability.

The practical significance of the work

The methodologies proposed in this thesis form a unified enhancement framework that
improves visual clarity and cross-modal consistency in RGB and TIR imagery. As a result,
the research has broad applicability across a range of safety-critical and high-value domains:

¢ Autonomous Driving and Advanced Driver-Assistance Systems enhance visibil-
ity in fog, haze, and nighttime conditions, enabling safer navigation and more reliable
detection of pedestrians, vehicles, and road signs.

» UAV-Based Wildlife Monitoring and Anti-Poaching Systems facilitate reliable
detection of animals and humans in dense forests or nighttime conditions, strength-
ening conservation efforts and UAV-based patrolling.
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* Search and Rescue Operations in Disaster Environments improve visibility and
consistency across video frames, enhancing detection of survivors and obstacles dur-
ing UAV-assisted missions.

* Medical Imaging and Computer-Assisted Diagnostics enhance contrast and sup-
press distortions in thermal medical images, facilitating early disease detection in
applications like breast thermography and skin diagnostics.

The methods of investigation

In this thesis, we have used a wide range of approaches from different fields, including signal
processing, machine learning, deep learning, and related fields. The Python programming
language and its associated packages were used to train deep neural networks, process data,
and design algorithms. Previous related results also served as a basis for this work.

Publications

All results are new and have been published in international and local journals, and presented
at international conferences. The main findings of this thesis have been published in six
scientific articles in various journals. The list of these articles is provided at the end of the
Synopsis.
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Figure 4: Overall Workflow of the Thesis Framework.

Structure of the Thesis
The dissertation consists of 7 chapters and a list of used literature. The thesis is written in

150 pages and has 247 literature references. The thesis contains 45 figures and 18 tables.

* Chapter 1 introduces the research context, clearly outlining existing limitations in
object detection under adverse weather conditions. It articulates the research ques-

9



tions and objectives and highlights the key novel contributions made throughout the
thesis.

¢ Chapter 2 aims to develop an innovative deep-learning solution to enhance object
detection performance in challenging weather conditions, particularly addressing the
significant degradation caused by haze and fog. Despite achieving considerable suc-
cess, current SOTA approaches often struggle with non-homogeneous haze, fail to
preserve natural color properties, and perform poorly on small training datasets. Most
critically, these methods are not optimized for downstream computer vision tasks
such as object detection, which is essential for real-world applications.

Light Haze .
Upsampling Light Haze Features

Attention Based

Gray level Weighted Fusion Gamma Correction

RCAN

HHU Residual Channel
Attention Network

Res2Net
Encoder

Heavy Haze Features
Heavy Haze
Upsampling

Figure 5: Overall architecture of EOD-Net.

To overcome these challenges, this chapter proposes EOD-Net, a novel end-to-end
RGB image dehazing architecture designed to improve object detection in hazy en-
vironments. Overall pipeline of the EOD-Net is presented in Figure 5. Key inno-
vations include a dual-branch dehazing system with a Gray-Level Weighted Fusion
module and a specialized enhancement Attention-Based Gamma Correction module
for color restoration, effectively addressing the limitations of previous approaches.
Comprehensive evaluations on synthetic (I-Haze [22], O-Haze [23], NH-Haze2 [24])
and real-world hazy datasets demonstrate superior performance over existing SOTA
methods across multiple image quality metrics (LPIPS [25], PSNR, SSIM [26],
FSIM [27], VIF [28]). Furthermore, practical testing on traffic surveillance footage
significantly improves object detection performance as shown in Figure 6. Unpro-
cessed hazy images allow detection of only 3-4% of vehicles from all present ve-
hicles, while EOD-Net enables detection of approximately 40% of all vehicles in
heavily hazed environments. This substantial improvement demonstrates EOD-Net’s
effectiveness for real-world applications where visual clarity directly impacts safety
and operational decisions.

* Chapter 3 addresses thermal image dehazing under severe atmospheric degradation
such as haze, smoke, and fog, which obscure details, lower contrast, and degrade
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Figure 6: Vehicle detection results compared with other SOTA dehazing methods.

downstream performance. Current SOTA methods work reasonably well on thermal
images captured in visible-light environments but still struggle under these adverse
conditions. To overcome these limitations, we propose MTIE-Net, a Mamba-based
thermal image dehazing framework built on the Enhancement and Denoising State
Space Model. By integrating CNNs with state-space modeling, the network performs
joint denoising and enhancement, restoring visibility while preserving critical edges
necessary for reliable object detection. Extensive experiments on the M3DF dataset
[29] show that MTIE-Net outperforms both traditional and deep-learning baselines
across PSNR and SSIM [26], EME, BDIM, and MDIMTE [30]. Table 1 presents
the quantitative results on the M3FD dataset for object detection evaluation. Nearly
all enhancement methods significantly improved detection performance compared
to using only the original infrared images. Our proposed MTIE-Net outperformed
other methods in terms of detection mean Average Precision (AP), achieving up to
a 25% improvement in detection accuracy compared to when using artificially gen-
erated challenging hazy infrared images, and around 8% improvement over the best
competing enhancement method under challenging conditions. Furthermore, it gen-
eralizes well to real-world domains, making it practical for surveillance and other
safety-critical applications where object-detection performance is essential.

Table 1: Object detection evaluation (m AP, 5) under adverse weather conditions.
Measure Day Overcast Night Challenge mAP, 5
Hazy Infrared 0.718 0.721  0.620 0.618 0.710
Original Infrared 0.806  0.798  0.712 0.739 0.786

Visible 0.827 0.789 0.764  0.759 0.758
AGCCPF 0.811 0.799 0.739  0.748 0.789
BBCNN 0.815 0.805 0.743  0.747 0.790
IE-CGAN 0.816 0.808 0.768  0.754 0.791
WTHE 0.818 0.810 0.785  0.783 0.792
MTIE-Net 0.828 0.819 0.849 0.871 0.812
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¢ Chapter 4 aims to develop an innovative physics-guided framework for thermal im-
age enhancement that overcomes inherent challenges such as low contrast, ghosting
artifacts, blurred edges, and sensor noise, all impairing downstream vision tasks. Ex-
isting SOTA techniques can boost contrast but often amplify noise and leave ghost
artifacts, limiting their generalization across domains. To address these challenges,
this chapter introduces PB-IID-Net. Figure 7 illustrates the architecture of PB-IID-
Net.

Physics-Based Networks for Infrared Image Decomposition and Enhancement
[TD-Net: Decomposition

() Ghosting Effe:

Figure 7: Overall architecture of PB-IID-Net.

The network leverages physics principles specific to thermal imagery by applying the
extended Stefan-Boltzmann law in its decomposition module to separate temperature
and emissivity components. It then removes ghosting through an artifact-suppression
block and applies adaptive fusion with pixel-wise gamma correction, restoring visibil-
ity while preserving fine structural details. Extensive tests on five datasets (LTIR [31],
CVC-14 [32], Autonomous Vehicles [33], Solar Panel [34], and Breast [35]) show
that PB-IID-Net outperforms traditional and learning-based baselines across the non-
reference metrics EME, BDIM, MDIMTE, BRISQUE, and NIQE [30]. PB-IID-Net
achieves superior enhancement across different types of infrared images (near, mid,
and far infrared), consistently outperforming other methods with notable improve-
ments in object detection metrics across all spectra.

Table 2: Detection performance (mAP) on various inputs and models

Orig. Orig. Orig. WTHE WTHE WTHE PB-TID-Net  PB-IID-Net PB-IID-Net PB-IID-Net PB-IID-Net PB-IID-Net

Measure on NIR on MIR on FIR on NIR on MIR on FIR
NIR MIR FIR onNIR onMIR onFIR k= 2) k= 2) k= 2) = 4) (k = 4) = 4)
mAPs50 T 51.9 56.6 482 53.1 584 49.9 60.5 63.8 55.9 59.7 63.2 56.4
mAP75 1 148 201 163 153 22.1 18.5 19.9 27.5 20.7 18.4 27.1 213
mAPs0.05 T 226 251 225 235 26.8 24.1 284 31.5 27.7 26.9 309 29.1

With spectrum-specific optimal empirical parameters (K=2 for NIR and MIR, K=4
for FIR), the model demonstrated significant performance in the MIR spectrum, rep-
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resenting up to 5.4% higher mAPg 5 and 4.7% higher mAP 5.9 95 compared to
other enhancement techniques, as shown in Table 2.

* Chapter 5 focuses on designing a Mamba-based framework for thermal video en-
hancement that addresses core issues such as low contrast, motion blur, sensor noise,
and frame-to-frame inconsistencies that hinder object tracking and detection. Exist-
ing SOTA methods often enhance contrast at the cost of introducing temporal flicker,
misaligned motion, and residual noise, which limits their reliability in real-world sce-
narios. This chapter proposes TVEMamba, which tackles the aforementioned chal-
lenges in thermal videos. First, sharpening and denoising the network improve each
frame through denoising and sharpening. Next, the blur-resistant motion estimation
network generates blur-resistant optical-flow maps from consecutive frames to cap-
ture complex motion patterns. Finally, the motion deblurring network combines the
aligned frames, creating a temporally coherent, high-clarity video without motion-
induced artifacts while preserving fine spatial detail. Extensive evaluations on five
datasets (BIRDSAI [36], FLIR [37], CAMEL [38], Autonomous Vehicles [33], and
Solar Panels [34]) demonstrate that TVEMamba outperforms SOTA methods across
several non-reference quality metrics: EME, BDIM, DMTE, MDIMTE, LGTA [30],
and BIE [39]. Additionally, as shown in Table 3, it boosts object detection accuracy
by more than 6 % relative to the original degraded wildlife monitoring footage. These
improvements highlight the practical advantages of TVEMamba for applications in-
volving severely deteriorated video quality. This makes the method particularly valu-
able for wildlife monitoring, autonomous driving systems, and UAV-based military
operations, where precise object detection is essential.

Table 3: Object detection performance on the BIRDSAI dataset. YOLO; and Hyper-
YOLO; models are trained on original datasets, and YOLO5 and Hyper-YOLO, models
are trained on enhanced datasets produced by the TVEMamba framework.

Classes 2 3 2

Architecture  YOLO; YOLO2 YOLO; YOLO: Hyper-YOLO;: Hyper-YOLO2
mAPg 5 38.1 44.2 25.0 29.7 38.0 43.9
mAPy 5:.0.9 132 16.8 9.3 10.9 12.9 16.4

« Chapter 6 aims to bridge the gap between TIR and RGB imaging modalities through
anovel colorization framework that transforms thermal imagery into visually realistic
RGB representations. This enhances autonomous driving capabilities in challenging
low-visibility conditions and enables applicability for RGB-based object detection.
Existing thermal-to-visible translation methods face significant limitations, including
semantic distortions, temporal inconsistency across video frames, poor performance
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on small objects, and insufficient detail preservation in complex textures. These chal-
lenges become particularly pronounced when translating objects with minimal ther-
mal differences, such as buildings and trees. These challenges substantially reduce
their effectiveness for critical downstream applications such as object detection in au-
tonomous driving systems. This chapter proposes FWGAN, a frame-based Weber-
law-driven Generative Adversarial Network, as shown in Figure 8.

FWGAN Frame-Based Deep Feature Extractor
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Figure 8: Overall Architecture of FWGAN for Thermal Image Translation and Analysis.

This innovative thermal-to-visible translation network addresses current limitations
through specialized components: a Preprocessing Module that enhances sharpness
and reduces noise, a Frame-based Deep Feature Extractor Module that integrates
complementary features from pre-trained backbones, and a Frame Information Up-
date mechanism that ensures temporal consistency across video sequences. Integrat-
ing extended Weber Contrast Enhancement-driven edge detection improves fine de-
tail preservation when minimal temperature differences exist. Evaluations on FLIR
[37] and KAIST [40] datasets demonstrate FWGAN’s superior performance across
multiple image quality metrics, including NIQE, BRISQUE, and PIQE [30] for im-
age naturalness assessment. Most critically, compared to existing SOTA colorization
techniques, FWGAN enhances object detection accuracy from 61% to 63%, con-
firming its potential for integration into autonomous driving systems operating in
adverse visibility conditions.

» Chapter 7 concludes the thesis by summarizing the main contributions, discussing
current limitations, and proposing potential future research on robust multi-modal
perception in challenging environmental conditions.

Figure 4 illustrates the logical progression of this thesis, demonstrating how each chapter
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systematically contributes to a comprehensive framework for robust object detection under
challenging visibility conditions.
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3akioueHne
OrannucsH Capruc AHApeacoBUY

Oo0Hapy:keHue 00bEKTOB B HEOJIArONPUSITHBIX MOTOAHBIX YCJIOBHAX € MCNOJIL30BAHHEM
BU/IMMBIX M TeILUIOBBIX H300paskeHHii H HOBBIX MEeTO10B IIy00KOro 00y4eHust

PaGora nocBsileHa yIydIIeHHIO CUCTEM 0OHApYKEHHUsI 0OBEKTOB U MOBBIIIEHHUIO CTAOMIIBHOCTH
UX paboThl, OCOOGHHO B YCIOBHAX IUIOXOH BHIMMOCTH (TyMaH, ABIM, JABIMKA, HH3Kas
ocBeleHHOCTh). C 3TOH 1enblo0 pa3paboTaHbl HOBBIE METOABI INIyOOKOTO OOY4EHHs, KOTOpbIE
ucnons3ytoT kak BuauMele (RGB), Tak u temnossie (TIR) nzobpaxenus. [IpoBeneHHbIe OLIEHKH
HOATBEPXKIAIOT 3(P(PEKTUBHOCTh Pa3pabOTAHHBIX DELICHHIl W TOKAa3bIBAIOT MX IHMOTCHIMAN B
peaIbHBIX MPUKIAAHBIX 33a4aX.

OCHOBHEIC TIeTTH PaOOTHI:

1. PaspaGorarh HOBBIE CETH [ITyOOKOTO OOYUEHHs IS yAaIeHHsI TyMaHa WK JbIMKU KaK C
BuanMbIX (RGB), Tak u ¢ TemnoBsix (TIR) nzo06paxeHuid.

2. Paspaborarh cetu DIyOOKOro OOydYeHHsS JUIS YAYYIICHHUS KavyecTBa TEIUIOBBIX
U300paXCHUI W BUACO (MOBBINICHHE KOHTPACTHOCTH, CHIDKCHHE MIyMa), C LENbI0
c/enaTh 0OHapy)eHUEe 00BEKTOB 00JICe TOUHBIM U CTAOUITBHBIM.

3. Paspaborare HOByIO ceThb DIIyOOKOro OOydYeHHs IS IpeoOpa3zoBaHMs (KOJOPH3ALIUH)
TEeIUIOBBIX M300paxkeHnit B BumuMble (RGB) 1BerHBIe M300pakeHUs. JTO MO3BOJIMT
WCIOJIF30BaTh yXe CYIIECTBYIOIINE METOAbl OOHapyXeHHs OOBEKTOB, u30eras
HEOOXOMMOCTH HX MepeoOydeHHs Ha TETIOBBIX N300paKeHHSX.

4. TlpoBecTH IeTaabHYIO OLEHKY 3P ()EKTHBHOCTH MPEAJIOKEHHBIX PEIICHHUH (B YaCTHOCTH,
TOYHOCTH OOHAPY)KCHHS) C HUCIOJB30BAHHEM PA3IMYHBIX HAOOPOB JaHHBIX (KaK
JTAJIOHHBIX, TAK U MOJIyYEHHBIX B PEAJIbHBIX YCIOBUSX).

B nmnepBoii rmaBe mpencraBiaseTcs 00TACTh HCCIENOBAHUS, OOBSACHSIETCS, IOYEMY CIIOXKHO
00HapyXHBaTh OOBEKTHI B TIOXYIO ITOTOY, CTABATCS 3a[a4d M IETH pabOTH U MOAYSPKHBAIOTCS
OCHOBHBIE HOBBIE TIOJIXO/IBI JHCCEPTAIHH.

Bropas ri1aBa mocpsieHa peeHuo IS MOBBIIEHUS d3PPEKTUBHOCTH 0OHAPYKEHUS OOBEKTOB
B YCIOBHSX IUIOTHOW JABIMKH TIOCPENCTBOM HOBOW ceTH miyOokoro oOydenuss EOD-Net.
PesynbraTel mokasanu 3HaUNTENbHOE ymydmreHHe >¢dexruBHOCTH oOHapyxeHus ¢ 3-4% mo
npumepHo 40%.

B Tpetbeii miaBe npemnaraercs HoBas cetb MTIE-Net (ocHoBaHHas Ha Monesix "Mamb6a") st
yAaIeHHs! ABIMKH C TEIUIOBBIX M300paskeHUH. DTOT METOA yiTydIIaeT TOYHOCTh OOHApYKEHUS Ha
25% 10 CpaBHEHHIO ¢ HeOOPaOOTaHHBIMH TETUIOBBIMH H300paKEHHUSIMH.

B uyerBepToli IaBe IpeNCTaBISETCS METON YIyYIIEHHs KauecTBa TEIUIOBBIX HM300paskeHUH
(JacTHIHO OCHOBAHHEIH Ha (HU3MUECKOM 3aKoHE) mocpencTBoM cetn PB-IID-Net. Oto pemenue
CIIOCOOCTBYET MOBBIICHHIO 3PPEKTUBHOCTH OOHAPYKECHUS OOBEKTOB M MIPUMEHUMO IS JIFOOOTO
Jrara3oHa NHQPAKPaCHOTO CHEKTPA.

B nsrToii miaBe mpemnaraercs cetb TVEMamba (ocHoBanHas Ha Mozaensx "Mamb6a'") mis
yaydleHusa Ka4yecCTBa TEIUIOBBIX BHICO. OnHa TOBBINIAET TOYHOCTH 06Hapy>1<el-lm{ 06’])6](TOB
IpUMEPHO Ha 6%.



B mecroii rnase paspaborana HoBas cetb FWGAN, mocpeacTBoM KOTOPOil MOXKHO MONy4aTh C

TeIoBbIX K300paxeHuit Bunumble (RGB) uBetHble m300paskeHHMA. DTOT METOH MOBBILIIAET

TOYHOCTb OOHapy>keHuUsI 00beKTOB ¢ 61% 110 63%.

B cenbMoii raBe MOOBOIATCS WTOTM AMCCEPTALMM, OTMEYAIOTCS BO3MOMKHBIC HAIpaBICHUS

JaJIbHEHIITIX HCCJIeI[OBaHHfI, CBS3aHHBIC C PAa3sBUTUEM BHU3YAJIBHBIX CHUCTEM, pa60Tanu_1Hx B

CJIOJKHBIX YCJIOBUAX.

IIpukiaagHoe u Hay4yHOe 3HAYEHHE PA0OThI

I[PICCCpTaHPIOHHaS{ pa60Ta HUMECT KaK 3HAYUTECIBbHOC IMPUKJIAJHOEC, TAK U HAYYHOC 3HAYCHUC.

Pe3yHbTaTI>I pa60T1>1 MO3BOJIAAIOT 3HAYUTECIBHO IMOBBICUTH HAACKHOCTH U 0e301acHOCTh
CUCTEM O6Hapy)KeHI/I${ 00BEKTOB B PCAJbHBIX NPUIIOKEHUIX (TaKI/IX KaK aBTOHOMHEII
TPaHCIIOPT, CHUCTEMbI Ha6J'IIOI[€HI/I$I, ITOMCKOBO-CIIaCaTCJIbHBIC pa6OTBI), 0COOCHHO B
YyCIoBUAX IJIOXOU BUJIMMOCTH M CIIOKHBIX TMOTOAHBIX YCIIOBUAX.

DddexTrBHOCT pa3paboTaHHBIX METOJOB OLIEHEHA B OKCIIEPUMEHTAX, IPOBEICHHBIX HA
pa3iInMyYHbIX HaOOpaxX JaHHBIX. DTH KCIICPUMEHTHI MOKa3aJlk, YTO OHM IPEBOCXOMAT
CYILLIECTBYIOIIME MEPeloBble pelleHus, obecreunBas 0ojee BBICOKYIO TOYHOCTh M
cTabMIFHOCTH 00OHAPYKEHHUSI 0OBEKTOB.

ITonmy4eHHbIE Pe3yabTaThl U pa3pabOTaHHBIC MOAXOABI MOTYT IIOCITYXKUTh OCHOBOW IS
Pa3BUTHA psifia HAyYHBIX M NPHKIAIHBIX TaTbHEHIINX HAPaBJIeHUIl, B YaCTHOCTH, 11
JaNbHEHIIero  yaydlleHHs OOHapyKeHHs OOBEKTOB IIyTEM OIXHOBPEMEHHOIO
ucnons3oBaHust BUANMBIX (RGB) u termossix (TIR) n3o0pakenuii.



