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1. Relevance of The Theme

The pursuit of novel molecules with tailored functionalities—be it for therapeutic intervention,
advanced materials, or sustainable chemical processes—navigates an extraordinarily vast and
complex landscape known as chemical space. This conceptual multidimensional space encompasses
all theoretically possible molecular structures. Conservative estimates place the number of "drug-
like" molecules alone on the order of 10%° [1], a figure of such magnitude that it underscores the
impossibility of exhaustive experimental enumeration and characterization. Consequently, the
rational exploration and exploitation of chemical space necessitate powerful computational and
theoretical frameworks capable of predicting molecular properties and guiding the search for
promising candidates. Figure 1 illustrates the astronomical scale of chemical space in contrast to
existing molecular databases [2], [3], [4], [5], [6], highlighting the vast opportunity space accessible
only through efficient in silico strategies.

Number of Molecules (log scale)

10%F 2¢+06

DrugBank ChEMBL PubChem ZINC15 Enamine REAL Chemical space
("drug-like”)

Figure 1: Chemical space (~10°° molecules) compared to known molecular datasets

The application of machine learning (ML) to chemical discovery, while holding immense promise,
faces unique challenges not typically encountered in other data-rich disciplines like computer vision
or natural language processing. In those fields, vast datasets are often readily available or can be
generated at a relatively low cost per instance. In contrast, each data point in chemistry, a molecule
annotated with its experimentally determined or accurately computed properties, can represent a
significant investment of time, resources, and expert labor. This inherent data scarcity, juxtaposed
with the hyper-dimensionality of chemical space, means that traditional ML approaches requiring
voluminous training data often encounter limitations in terms of generalizability and predictive
accuracy. The development of robust models for chemistry is therefore critically dependent on
strategies that can either maximize the information gained from limited, high-cost data or
dramatically increase the efficiency of high-quality data generation.

The process of annotating molecular structures with relevant properties, can be approached through
several distinct methodological tiers. Experimental measurements provide the ultimate ground
truth but are often low-throughput, expensive, and may not be feasible for all properties or for vast
numbers of compounds. At the other end of the spectrum, empirical methods, such as classical
molecular mechanics force fields, offer high computational speed but their accuracy and
transferability can be limited, particularly for novel chemical entities or quantum mechanical
phenomena. Semi-empirical methods provide a compromise by incorporating some quantum
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mechanical approximations with empirical parameterization, offering improved accuracy over force
fields at a greater computational cost. Ab initio methods [7], derived from first principles of
quantum mechanics without empirical parameters, offer the highest potential for accuracy and
generalizability. Within this category, methods based on solving approximations to the Schrodinger
equation [8], such as Density Functional Theory (DFT) [9], have become workhorses. While ab
initio methods provide highly reliable data, they are the most computationally intensive. This thesis
focuses on leveraging ab initio methods, specifically DFT, for generating high-quality reference
data due to their foundational accuracy, while simultaneously addressing the associated
computational challenges.

Generating accurate ab initio reference data is computationally demanding. Maximizing the utility
of these expensive calculations for machine learning (ML) requires diverse datasets, avoiding
redundant molecular structures. Consequently, quantitatively assessing molecular uniqueness is
paramount, with molecular similarity metrics being essential for effective data curation and active
learning strategies. In active learning, accurate similarity measures maximize information gain and
crucially prevent wasteful re-labeling of conformations that are structurally identical or highly
similar, especially when considering molecular symmetry. Robust structural comparison is thus key
to efficiently building diverse, informative datasets and ensuring computational resources target
genuinely novel structural information.

Challenges in Ab Initio Methods and Their Implementation

The fundamental properties and behavior of any given molecule are ultimately governed by the
principles of quantum mechanics. The time-independent Schrodinger equation[8], H¥Y = E¥W, where
H is the Hamiltonian operator, ¥ is the molecular wavefunction, and E is the energy of the system,
provides the theoretical bedrock for understanding molecular structure and reactivity. While this
equation offers a complete description, its exact solution is intractable for multi-electron systems,
necessitating approximations. For performing ab initio calculations, several practical challenges
arise:

e  Choice of Approximation Level: The selection of an appropriate level of theory is a critical
first step and involves choosing both a method (e.g., a specific DFT functional) and a basis set.
DFT itself encompasses a vast array of exchange-correlation functionals (e.g., ®B97X [10],
®B97X-D [11]), each with different strengths and weaknesses for particular properties or
molecular classes; no single functional is universally optimal. Similarly, the choice of basis set
(e.g., Pople-style like 6-31G(d) [12] or specialized sets like def2-TZVP [13]) significantly
impacts accuracy and computational cost, with larger, more flexible basis sets generally
yielding more accurate results but at a substantially higher computational price. An
inappropriate combination of functional and basis set can lead to inaccurate results or
unmanageable computational demands.

e  Computational Cost: The Time-Accuracy Trade-off: Ab initio calculations, particularly
DFT, are computationally intensive, with costs typically scaling as a power (often N3 to N*, or
higher for more sophisticated methods) of the number of basis functions, which correlates with
molecular size. Consequently, pursuing higher accuracy—through larger basis sets, more
advanced functionals, or post-Hartree-Fock [14] methods—invariably leads to a significant
increase in computation time. Researchers must constantly navigate this trade-off, balancing
the desired level of accuracy against available computational resources and project timelines.



Software and Tool Availability: A variety of academic and commercial software packages are
available for performing quantum chemical calculations, including well-known examples such
as Gaussian [15], ORCA [16], Q-Chem [17], NWChem [18], and Psi4 [19]. Each package
possesses its own distinct advantages, limitations, range of supported theoretical methods,
parallelization efficiencies, and user interface paradigms. Effective utilization of these tools
necessitates a degree of familiarity with the specific chosen software, encompassing the
intricacies of input file preparation, the ability to correctly interpret complex output files, and
the capacity to troubleshoot common computational issues and error conditions.

Resource Requirements: Beyond the significant CPU time, ab initio calculations can impose
substantial demands on other system resources, notably Random Access Memory (RAM) and
disk storage. These requirements tend to escalate rapidly with the size of the molecule being
studied and the extensiveness of the basis set employed.

Addressing these practical challenges is essential for any research endeavor that relies on generating
or utilizing data from ab initio calculations. The complexity and resource intensity of these methods
directly motivate the need for efficient data generation strategies, such as active learning and
distributed computing, as explored in this thesis.

Challenges in Existing Quantum Mechanical Datasets

The efficacy of ML models in chemistry is profoundly dependent on the quality and diversity of
training data, particularly for predicting quantum mechanical properties like conformational energy.
However, many existing molecular datasets exhibit significant limitations that hinder the
development of truly generalizable models capable of navigating the vastness of chemical space:

ANI-1 [20] dataset, while large, is restricted to small organic molecules with only H, C, N, and
O atoms (max 8 heavy atoms), limiting its chemical space representativeness for broader
applications.

ANI-2x [21] dataset, the successor of ANI-1, expanded atom types and provided multiple levels
of theory but still predominantly features relatively small molecules.

NablaDFT [22] dataset offers broader chemical space coverage than ANI-1 and includes more
atom types, but its initial version's conformations were generated via RDKit without MD, and
it was derived from the MOSES dataset, potentially not optimized for conformational analysis;
NablaDFT 2.0 has started to address this by including relaxation trajectories.

GEOM [23] dataset is extensive but contains molecules from QM9 and experimental sources,
with the DFT level of theory for some subsets considered less accurate by some compared to
ANI or NablaDFT.

QM09 [24] dataset is limited by providing at most one conformation per molecule, insufficient
scaffold diversity, and significant train-test scaffold overlap, which can lead to data leakage and
overoptimistic model evaluations.

Other datasets like MPCONF196 [25], Transitionlx [26], MD17 [27], and MD22 [28] are
highly specialized, focusing on specific areas like peptides, reaction pathways, or MD
trajectories for a very limited number of systems, and thus do not offer the broad, diverse
conformational energy landscapes required for general-purpose ML model development.



These limitations underscore the critical need for novel approaches to dataset curation. Specifically,
there is a demand for methods that can generate large, diverse, and high-quality datasets covering
therapeutically relevant chemical space, such as molecules from the ENAMINE database
(ENAMINE Ltd., n.d.) [6]. Furthermore, the adoption of rigorous train-test splitting methodologies,
including scaffold-based separation augmented by similarity filtering, is essential to avoid
overoptimistic model evaluation and ensure true generalization. The bottleneck, therefore, is not just
the computational cost of individual calculations, but the strategic generation and curation of
datasets that are truly fit for the purpose of training robust and widely applicable ML models.

Challenges in Symmetry-Corrected RMSD Calculation Tools (SC-RMSD)

The accurate comparison of molecular structures, essential for identifying unique conformations and
ensuring dataset diversity, is complicated by molecular symmetry. The Root Mean Square Deviation
(RMSD) is the standard metric, but its naive application can be misleading for symmetric molecules.
Symmetry-corrected RMSD (SC-RMSD) addresses this by finding the optimal atomic mapping that
minimizes the RMSD, effectively solving a graph isomorphism problem. As the graph isomorphism
problem itself is known to not have a polynomial-time solution for general graphs (though practical
algorithms exist for many specific graph classes, including molecular graphs), there is no universally
efficient tool that entirely solves this problem for all molecular structures, particularly in the face of
combinatorial explosion for larger or highly symmetric systems. Two variants of this metric are
widely used in computational chemistry; however, tools for calculating both encounter significant
issues.

e The first variant focuses on determining the SC-RMSD value given a fixed orientation of the
two molecules, primarily solving the atom-mapping or graph isomorphism problem. Tools like
DockRMSD [29] provide lightweight implementation, but suffer from high failure rates,
segmentation faults, and intractably long runtimes for certain molecular topologies. SpyRMSD
[30], relying on general graph libraries like NetworkX, offers flexibility but at the cost of
efficiency, often proving "prohibitively slow" for practical applications and having limited
support for nuanced chemical features like bond-type variations. These issues highlight that
even without the added complexity of optimal superposition, the core atom-mapping step for
symmetric molecules remains a significant hurdle for existing tools, impacting their reliability
and throughput.

e The second variant, often referred to as minimized SC-RMSD, combines the symmetry-
corrected atom mapping with the simultaneous optimization of the relative translation and
rotation of one molecule with respect to the other to achieve the lowest possible SC-RMSD
value. This is the more common requirement in structural alignment tasks. Obrms, from the
OpenBabel suite [31], is a widely used tool that addresses this; however, it relies on iterative
approaches or heuristics to explore the isomorphism space in conjunction with superposition
algorithms. This can become computationally expensive, particularly for molecules with high
degrees of symmetry. Another approach is introduced by tools like pubchem_3d_align [32]
(integrated within RDKit [33]), which may use alternative strategies such as pharmacophore
alignment or other feature-based methods to guide the superposition and similarity calculation.
While potentially faster, these methods can introduce accuracy issues if the chosen features do
not fully capture the relevant structural details or if the heuristic search is incomplete, leading
to suboptimal alignments and RMSD values.

These documented issues across different approaches, ranging from outright crashes and incorrect
outputs to prohibitive computational times or potential inaccuracies, highlight an unmet need for
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improved SC-RMSD tools. Furthermore, the absence of a dedicated dataset that systematically tests
RMSD performance on symmetrical structures means that evaluations often rely on ad hoc
collections of molecules or focus on only a few specific chemotypes, failing to capture the breadth
of real-world symmetry challenges. Robust and efficient SC-RMSD is critical for data acquisition
pipelines to ensure that only unique structural information is subjected to expensive labeling, thereby
maximizing the utility of computational resources.

2. Aim of the Work

This thesis addresses key challenges in computational molecular science, focusing on high quality
data generation and structural analysis. The five main objectives are:

e Design and validation of a platform for large-scale DFT calculations via volunteer computing.

e Design active learning framework for efficient and informative molecular conformation
selection.

e  Generate and publish large-scale datasets of molecular energies, with a focus on diverse drug-
like compounds.

e Develop machine learning models for accurate prediction of conformational energies using the
new datasets.

e Develop fast and accurate tool for symmetry-corrected RMSD calculation.

e  Generate and publish comprehensive benchmark dataset for comparison of symmetry-corrected
RMSD calculation tools.

3. The Practical Significance of the Work

The methodologies, tools, and datasets developed in this thesis offer significant practical benefits
across various domains of computational chemistry, drug discovery, and materials science. The key
areas of impact include:

e  Facilitating Broader Molecular Data Generation: The validated volunteer computing
platform (SDDF) is not limited to conformational energies. Its architecture allows for the
definition of new computational projects, enabling the community to leverage distributed
resources for generating datasets of other crucial molecular properties (e.g., atomic charges,
dipole moments, vibrational frequencies, reaction energies) that are also expensive to compute
via DFT.

e Advancing Neural Network Potentials for Molecular Dynamics: The high-quality DFT
energy and force data generated through this work serve as ideal training material for next-
generation machine learning potentials (MLPs), also known as neural network potentials
(NNPs). These MLPs can subsequently power molecular dynamics (MD) simulations with an
accuracy approaching that of DFT but at a significantly reduced computational cost.

e  Enriching Community Resources with Open Datasets: The public release of large-scale,
rigorously curated datasets of molecular energies, particularly those derived from drug-
discovery relevant libraries like ENAMINE and featuring diverse molecular sizes, directly
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addresses the critical issue of data scarcity in molecular ML. These open-source datasets
provide invaluable resources for the broader scientific community to train more robust and
generalizable predictive models, and enhance the performance of existing tools across a wider
swath of chemical space, thereby promoting innovation and reproducibility in the field.

e Improving Molecular Docking Accuracy and Efficiency: Molecular docking simulations, a
cornerstone of structure-based drug design, often generate numerous potential binding poses
for a ligand within a receptor's active site. Accurate calculation of SC-RMSD enables the
selection of structurally diverse conformations, reducing redundancy and improving the
efficiency of downstream analyses, which are often computationally intensive.

e Enhancing Reliability in Virtual Screening Pipelines: Virtual screening aims to
computationally evaluate vast chemical libraries to identify promising candidate molecules
with potential biological activity. When structural similarity analysis or conformational
assessment forms part of the screening cascade, the reliability and efficiency of SC-RMSD
calculations become paramount. This is especially critical to avoid the propagation of errors
that can arise from less reliable or computationally prohibitive symmetry correction and
alignment methods in large-scale automated workflows, leading to more efficient and accurate
hit identification.

e  Providing Standardized Benchmarks for Tool Validation: The comprehensive benchmark
datasets developed for the evaluation of SC-RMSD tools, serve as a vital, standardized resource
for the cheminformatics community. Developers of new SC-RMSD algorithms or software can
utilize these datasets to rigorously validate their methodologies, objectively compare
performance metrics (accuracy, speed, failure rates) against established tools, and pinpoint
areas requiring further improvement. This fosters a more systematic and transparent assessment
of new computational instruments, thereby promoting continued innovation and raising the
overall standard in the field of molecular structural comparison.

4. Approbation of the Work

The key findings and methodologies developed in this dissertation were presented at the scientific
conference Current Issues in Computer Science and Applied Mathematics (Yerevan, Armenia, April
28-30, 2025). Additionally, the research underwent internal review and discussion within the
company DeepOrigin.

Publications

All results presented in this thesis are original and have been published in both local and international
journals. The core findings are documented in 3 scientific articles. Additionally, 2 open-source
datasets developed in this work have been published on Zenodo. A complete list of articles and
datasets is provided at the end of the Synopsis.

5. Structure and Scope of Work

The dissertation consists of 5 chapters and a list of used literature. The thesis is written in 100 pages
and has 100 literature references. The thesis contains 20 figures and 10 tables.

The thesis is organized as follows:



6.

Chapter 1 serves as an introduction. It describes the problem, the main challenges in field of
computational chemistry that ML models face and the aim of the thesis.

Chapter 2 introduces SDDF volunteer computing platform, its architecture and design choices.

Chapter 3.1 summarizes our research of GNNs on conformational energy prediction task on a
pre-selected dataset.

Chapter 3.2 introduces Active Learning framework design, proposed methods for molecular
sampling and comparison of approaches.

Chapter 3.3 introduces Active Learning framework extension for MD-driven conformational
sampling, showcasing effects of conformational sampling on molecular dynamics stability.

Chapter 3.4 summarizes the datasets and models, generated and developed in this work. Also
reporting current state of SDDF platform, ongoing projects and data bank content.

Chapter 4.1 introduces FlashRMSD tool for SC-RMSD calculation.

Chapter 4.2 introduces the comprehensive benchmark analysis between SC-RMSD calculation
tools and discussion of case studies.

Chapter 4.3 introduces FlashRMSD extension for minimized SC-RMSD calculation.
Discussion of case studies and comparison against widely acknowledged tools and their
approaches.

Finally, Chapter 5 concludes the thesis with a summary of the contributions made.

The Main Results of the Work

The following points summarize the key contributions and findings:

1.

Platform for large-scale DFT calculations via volunteer computing: We developed the
SDDF (Smart Distributed Data Factory) platform, which provides a website
(https://sddfactory.cloud) where volunteers can sign up and receive molecular conformations
for DFT calculations on their personal computers. Each calculation task consists of a single
conformation of a molecule and a property specifier indicating a set of properties to calculate.
While distributed computing has a rich history, spanning academic grids [34], [35], public-
resource and peer-to-peer systems [36], [37], enterprise solutions [38], and versatile volunteer
frameworks like BOINC [39], these pioneering platforms often require extensive customization
or are not optimally suited for the specific demands of accessible, volunteer-driven DFT
calculations in chemistry. Challenges typically arise in areas such as fine-grained task
management for molecular computations, efficiency for quantum chemistry methods, and
streamlined handling of complex data for machine learning applications. SDDF was conceived
to directly address this niche, offering a tailored solution for quantum chemistry research
powered by public volunteers.

Returning to SDDF's specifics, in the case of conformational energy for an average-sized
molecule, a single-core machine is expected to calculate the property in about 10 minutes. The
result of each task is a dictionary with property names as keys and respective calculated values.
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Users can select the projects to which they want to contribute calculations, and they will receive
computational tasks only from those projects. Otherwise, the platform assigns tasks from
randomly selected projects.

The Smart Distributed Data Factory (SDDF) system is composed of interconnected
components that collectively manage, distribute, and process computational chemistry tasks
(Figure 2). At its core, the Central Node includes a Task Queue for managing workloads, a
Database for storing task-related data, and an SDDF Server that formulates and distributes
computational tasks via gRPC. A Web Server, hosted with FastAPI and backed by MongoDB,
enables external client interaction and visualizes volunteer contributions through a leaderboard
interface. Complementing this, the Distribution Node contains an SDDF Tunnel and Client
system, enabling volunteer nodes to retrieve molecular structures and submit results.
Supporting these components are several scheduled services: a conformation generator using
RDK:it or OpenBabel, a machine learning—based conformation generator that leverages energy
model gradients for force estimation, and an Al-enhanced task selector that prioritizes
challenging conformations for model improvement. Together, these modules ensure scalable,
intelligent generation and distribution of high-quality molecular data.

Scheduled Services Volunteer Clients Distribution Node
ML-Based Force Field SDDFClient SLLALL, =
Conformation Generator [}
3
o
SDDFTunnel “—t
SDDFClient

GRPC
Al enhanced task
selector
Central Node
‘ Task Queue
D t SDDFServer <—

Molecular Conformation fﬁ
Generator

WebServer

Figure 2: The architecture of the distributed computing system.

Active learning framework for efficient and informative molecular conformation
selection: SDDF implements an active learning framework to select molecules for labeling and
addition to the dataset. The framework iteratively samples molecules from a large database in
random fashion and generates multiple conformations for each molecule using RDKit and MD.
At each iteration, a fraction of the generated conformations is selected and labeled, after which
they are added to the dataset. The selection is performed based on an ensemble of ML models,
which are used to determine the most challenging conformations among the generated set of
conformations. The target property of the selected most challenging conformations is calculated
using DFT. In addition, the selected conformations are used as initial points for MD
calculations and the intermediate structures from the calculated trajectories are also labeled via
DFT. All newly labeled examples are incorporated into the dataset and used to re-train the ML
ensemble. Workflows for the molecule conformational energy dataset creation are illustrated
in Figures 3, 4.
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In order to train the ML ensemble, our platform labels a small initial dataset of randomly
selected conformations, and then its constituent models are re-trained after each iteration of
data selection and labeling.
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Figure 4: The labeling workflow of the SDDF: ML-based loss prediction approach

We use an ensemble of ML-based predictors where each predictor is a model trained separately
as a regression problem that gets the molecular conformation graph as input and outputs an
energy prediction. The nodes of the input graph are the molecule’s atoms, and its adjacency
matrix is constructed based on the bonds and distances between atoms (we considered an atom
pair as adjacent if they have a bond or their distance is below a threshold value).

We performed initial model selection by training and evaluating 33 different graph

convolutional neural network (GCNN) and Point Cloud architectures implemented in PyTorch

Geometric [40] for the conformational energy prediction task. Based on the evaluation results

we selected the 5 models with the best mean absolute error (MAE) scores on the validation set:
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GeneralConv, PNAConv, GENConv, TransformerConv and ResGatedGraphConv models, as
implemented in PyTorch Geometric. We further improved the models’ performance by
employing Point Pair Features for bonded atoms.

Generation and Publication of Large-Scale Datasets of Molecular Energies: A central
outcome of this research is the generation and public dissemination of substantial, novel
datasets of DFT-calculated molecular energies and their corresponding conformations. These
datasets were specifically curated to address the limitations of existing public resources,
focusing on chemical diversity and relevance to drug discovery by sourcing molecules
primarily from the ENAMINE REAL database. The conformational space for these molecules
was explored using a multi-pronged approach: initial conformer generation with RDKit
(ETKDGV3 algorithm [41]) and OpenBabel, optional geometry optimization using the
MMFF94 force field, and further enrichment via Molecular Dynamics simulations driven by
ML-derived forces as described in the active learning framework.

All quantum chemical calculations for energy labeling were performed using the Psi4 toolkit
at the ®B97X/6-31G(d) level of theory, a choice informed by its balance of accuracy and
computational cost, and its precedent in established datasets like ANI. The full labeled dataset
resulting from the SDDF project comprises 2,170,553 conformations, including 535,338
generated by RDKit, 1,151,936 by RDKit followed by MMFF94 optimization [42], and
483,279 generated via MD. A significant subset of this data has been meticulously prepared
and released as a benchmark for training and evaluating energy prediction models. This
benchmark dataset is characterized by a strict train-validation-test splitting methodology, which
first applies a scaffold split (using the RDKit Bemis-Murcko framework [43]) and then further
refines the splits by applying a Tanimoto similarity filter (maximum 0.7 similarity between test
and train scaffolds) to minimize data leakage and ensure a more realistic assessment of model
generalization. The resulting SDDF benchmark dataset demonstrates superior scaffold
diversity compared to many existing datasets like QM9, ANI-1, and NablaDFT, and includes
molecules of varying sizes, more representative of those encountered in drug discovery
projects. These datasets are publicly available via Zenodo, providing a valuable resource for
the broader scientific community.

Development of Machine Learning Models for Accurate Prediction of Conformational
Energies: Leveraging the newly generated datasets, a suite of machine learning models for the
accurate prediction of molecular conformational energies was developed and benchmarked.
The core models are based on the five selected GCNN architectures (GeneralConv, PNAConv,
GENConv, TransformerConv, and ResGatedGraphConv) that also form the ensemble within
the SDDF active learning framework.

These models take molecular conformation graphs as input, where nodes represent atoms and
edges are defined by bonds and inter-atomic distances below a threshold. Node features consist
of trainable embeddings for atom types, while edge features are a concatenation of embeddings
for unique atom pairs, edge types (bond types or unspecified for non-bonded interactions), and
an expanded version of rotation-invariant Point Pair Features (PPF-Diff variant) [44], which
proved beneficial for model performance.

Extensive experimentation with input features, including pre-trained Uni-Mol features, led to
the selection of the current feature set for optimal balance of accuracy and inference speed. The
models were trained using the Adam optimizer with a Mean Absolute Error (MAE) loss
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function, employing techniques such as dropout for regularization and a target energy shifting
scheme based on estimated self-interaction atomic energies to facilitate learning.

The performance of these individual models, as well as their ensembles (particularly an
ensemble of the top three: PNAConv, ResGatedGraphConv, GENConv), was rigorously
evaluated on the held-out SDDF test set. The results demonstrate that the SDDF-trained
models, especially the ensemble, outperform the widely recognized ANI-2x ensemble [45] in
terms of both RMSE and MAE, particularly for molecules containing bromine (which ANI-2x
does not support) and generally show more stable error profiles across varying molecule sizes,
unlike ANI-2x which exhibits noticeably higher MAE on molecules larger than its typical
training distribution. The developed models and inference code are made publicly available,
providing the community with accurate tools for energy prediction on diverse chemical
structures.

Development of a Fast and Accurate Tool for Symmetry-Corrected RMSD Calculation:
Addressing the critical need for reliable and efficient structural comparison, particularly for
symmetric molecules, a novel software tool named FlashRMSD was developed. The
motivation for FlashRMSD stemmed from documented limitations in existing open-source
tools: spyRMSD's inefficiency due to reliance on general graph libraries, DockRMSD's high
failure rates and restrictive file format support, and obrms's potential overhead. FlashRMSD
is designed for high performance and robustness, offering a comprehensive set of features
including support for multiple molecular file formats (SDF, MOL, MOL?2), handling of multi-
conformer files, options for naive (exhaustive permutation search) calculation for validation,
inclusion/exclusion of hydrogen atoms, strict enforcement of bond order matching during atom
mapping, verbose diagnostic output, atom-to-atom assignment reporting, cross-RMSD
calculation (all-pairs RMSD within a single file), and multi-query input support.
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Figure 5: Flowchart of the FlashRMSD algorithm

The core of FlashRMSD employs an efficient two-stage algorithmic approach (Figure 5). The
first stage involves the generation of atom descriptors: each atom is featurized using a sorted
array of values derived from a breadth-first traversal of the molecular graph rooted at that atom,
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encoding periodic table numbers and graph distances (Layer Data), which are then hashed for
rapid comparison. This heavy featurization is particularly advantageous for cross-RMSD
calculations. The second stage performs atom mapping via an optimized (early stopping based
pruning) backtracking algorithm with multiple levels of sophistication:

e Level ] offers naive backtracking,
e Level 2 resolves trivial one-to-one matches before backtracking,

o Level 3 (default) further decomposes the problem by identifying and processing
independent molecular blocks using a Disjoint Set Union (DSU) structure based on
descriptor matches or bonding, significantly pruning the search space.

Extensive benchmarking demonstrated that FlashRMSD consistently outperforms existing
tools like DockRMSDEXxt (an enhanced version of DockRMSD for fairer comparison [29]) and
obrms in terms of mean runtime for both cross-RMSD and all-to-all pairwise RMSD
calculations, often by a significant margin (e.g., ~4 times faster in cross-RMSD). It also
exhibited superior reliability, successfully processing many challenging cases (like CCD/PE3,
CCD/330, CCD/60C, and BIRD/PRDCC_900031) where other tools failed or timed out.

The source code for FlashRMSD is publicly available on GitHub at
https://github.com/altunyanv/FlashRMSD.

Generation and Publication of a Comprehensive Benchmark Dataset for SC-RMSD
Tools: To facilitate rigorous and standardized evaluation of symmetry-corrected RMSD
calculation tools, a comprehensive benchmark dataset was generated and published as part of
the FlashRMSD study. This was motivated by the observation that existing evaluations often
relied on ad-hoc molecule collections, failing to capture the full spectrum of symmetry
challenges.

The new benchmark dataset was constructed using molecules from two primary, structurally
diverse sources: the Chemical Component Dictionary (CCD) [46] and the Biologically
Interesting molecule Reference Dictionary (BIRD), both obtained from the RCSB Protein Data
Bank (PDB). As of February 2024, this involved processing 45,622 molecules from CCD and
819 from BIRD. Preprocessing included initial conformer generation (primarily using RDKit's
EmbedMolecule with MMFF94 optimization, and OpenBabel as a fallback) and filtering out
molecules with fewer than five heavy atoms, resulting in a final set of 45,706 unique molecular
structures. For each of these structures, up to nine docked conformations were generated using
SMINA [47] (a fork of AutoDock Vina) against the HIV-1 protease target (PDB ID: 1EBY),
chosen for its symmetrical dimeric structure and large, accommodating binding pocket. These
conformations were saved in both multi-conformer and individual MOL2 and SDF files,
creating a systematically organized dataset. Statistical analysis of the benchmark molecules
revealed a wide range of heavy atom counts (5 to 244), a typical range of 3 to 6 distinct atom
types, and a broad distribution of molecular symmetries as quantified by automorphism counts
computed using nauty&Traces [48].

This dataset, publicly available via Zenodo, along with the defined benchmark protocols,
provides a robust platform for current and future assessment of SC-RMSD tools.

14


https://github.com/altunyanv/FlashRMSD

List of author’s publications

1.

Altunyan, V., Comparative Analysis of Symmetry-Corrected RMSD Calculation Tools in
Molecular Docking. Vestnik RAU, 1, 25-36, (2024).

Ghukasyan, T., Altunyan, V., Bughdaryan, A., Smbatyan, K., Aghajanyan, T., Papoian, G. A.,
& Petrosyan, G., Smart Distributed Data Factory Volunteer Computing Platform for Active
Learning-Driven Molecular Data Acquisition. Sci Rep 15, 7122 (2025).

Altunyan, V., FlashRMSD: An Effective Approach for Symmetry-Corrected RMSD Calculation
with Extensive Benchmark Analysis. Mathematical Problems of Computer Science, 63, 9-16.

List of published datasets

1. Altunyan, V., Ghukasyan, T., Bughdaryan, A., Aghajanyan, T., Smbatyan, K., Papoian, G., &
Petrosyan, G. (2024). SDDF Energy Dataset (2024-Q3) [Data set]. Zenodo.
2. Altunyan, V., Ghukasyan, T., Bughdaryan, A., Aghajanyan, T., Smbatyan, K., Papoian, G., &
Petrosyan, G. (2025). SDDF Energy Dataset (2025-Q1) [Data set]. Zenodo.
3. Altunyan, V. (2025). Benchmark Dataset for Symmetry-Corrected RMSD Tools (FlashRMSD
Study) (1.0.0) [Data set]. Zenodo.
References
1] J.-L. Reymond, “The chemical space project,” Acc Chem Res, vol. 48, no. 3, pp. 722-730, 2015, doi:
10.1021/ar500432k.
[2] C. Knox et al., “DrugBank 6.0: the DrugBank Knowledgebase for 2024,” Nucleic Acids Res, vol. 52,
no. D1, pp. D1265-D1275, Jan. 2024, doi: 10.1093/nar/gkad976.
[3] M. F. Adasme et al., “The ChEMBL database in 2023: a drug discovery platform spanning multiple
bioactivity data types and time periods,” Nucleic Acids Res, vol. 51, no. D1, pp. D1401-D1413, Jan.
2023, doi: 10.1093/nar/gkad1004.
[4] S. Kim et al., “PubChem 2023 update,” Nucleic Acids Res, vol. 51, no. D1, pp. D1373-D1380, Jan.
2023, doi: 10.1093/nar/gkac956.
[5] T. Sterling and J. J. Irwin, “ZINC 15 — Ligand Discovery for Everyone,” J Chem Inf Model, vol. 55,
no. 11, pp. 2324-2337, Nov. 2015, doi: 10.1021/acs.jcim.5b00559.
[6] ENAMINE Ltd., “ENAMINE REAL Database.”
[7] J. A. Pople, “Development of ab initio methods in quantum chemistry,” Rev Mod Phys, vol. 71, no. 5,
pp. 1267-1274, Oct. 1999, doi: 10.1103/RevModPhys.71.1267.
[8] E. Schrodinger, “Quantisierung als Eigenwertproblem (Erste Mitteilung),” Ann Phys, vol. 384, no. 4,
pp. 361-376, 1926, doi: 10.1002/andp.19263840404.
[9] W. Kohn, A. D. Becke, and R. G. Parr, “A perspective on density functional theory,” J Phys Chem, vol.
100, no. 31, pp. 12974-12980, 1996, doi: 10.1021/jp9606691.
[10] J.-D. Chai and M. Head-Gordon, “Systematic optimization of long-range corrected hybrid density

[11]

functionals,” J Chem Phys, vol. 128, no. 8, p. 84106, 2008, doi: 10.1063/1.2834918.

J.-D. Chai and M. Head-Gordon, “Long-range corrected hybrid density functionals with damped atom-
atom dispersion corrections,” Physical Chemistry Chemical Physics, vol. 10, no. 44, pp. 6615-6620,
2008, doi: 10.1039/B810189B.

15



[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

(26]

[27]

(28]

[29]

[30]

P. C. Hariharan and J. A. Pople, “The Influence of Polarization Functions on Molecular Orbital
Hydrogenation Energies,” Theor Chim Acta, vol. 28, mno. 3, pp. 213-222, 1973, doi:
10.1007/BF00533485.

F. Weigend and R. Ahlrichs, “Balanced basis sets of split valence, triple zeta valence and quadruple
zeta valence quality for H to Rn: Design and assessment of accuracy,” Physical Chemistry Chemical
Physics, vol. 7, no. 18, pp. 3297-3305, 2005, doi: 10.1039/B508541A.

C. C. J. Roothaan, “New Developments in Molecular Orbital Theory,” Rev Mod Phys, vol. 23, no. 2,
pp. 69-89, Apr. 1951, doi: 10.1103/RevModPhys.23.69.

M. J. Frisch et al., “Gaussian 16, Revision C.01,” 2016, Gaussian, Inc., Wallingford CT.

F. Neese, “Software update: the ORCA program system — Version 5.0,” Wiley Interdiscip Rev Comput
Mol Sci, vol. 12, no. 5, p. €1606, 2022, doi: 10.1002/wcms.1606.

E. Epifanovsky et al., “Software for the frontiers of quantum chemistry: An overview of developments
in the Q-Chem 5 package,” J Chem Phys, vol. 155, no. 8, p. 84801, 2021, doi: 10.1063/5.0055522.

E. Apra et al., “NWChem: Past, present, and future,” J Chem Phys, vol. 152, no. 18, p. 184102, 2020,
doi: 10.1063/5.0004997.

D. G. A. Smith ez al., “Psi4 1.4: Open-Source Software for High-Throughput Quantum Chemistry,” J
Chem Phys, vol. 152, no. 18, p. 184108, 2020, doi: 10.1063/5.0006002.

J. S. Smith, O. Isayev, and A. E. Roitberg, “ANI-1, A data set of 20 million calculated off-equilibrium
conformations for organic molecules,” Sci Data, vol. 4, p. 170193, 2017, doi: 10.1038/sdata.2017.193.

K. Huddleston et al., “ANI-2x Release,” 2023, Zenodo. doi: 10.5281/zenodo.10108942.

K. Khrabrov ef al., “nablaDFT: Large-Scale Conformational Energy and Hamiltonian Prediction
benchmark and dataset,” Physical Chemistry Chemical Physics, vol. 24, no. 42, pp. 25853-25863,
2022, doi: 10.1039/d2¢cp03966d.

S. Axelrod and R. Goémez-Bombarelli, “GEOM, energy-annotated molecular conformations for
property prediction and molecular generation,” Sci Data, vol. 9, no. 1, p. 185, 2022, doi:
10.1038/s41597-022-01288-4.

R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. Von Lilienfeld, “Quantum chemistry structures and
properties of 134 kilo molecules,” Sci Data, vol. 1, p. 140022, 2014, doi: 10.1038/sdata.2014.22.

J. Rezag, D. B\\im, O. Gutten, and L. Rul\\idek, “Toward Accurate Conformational Energies of
Smaller Peptides and Medium-Sized Macrocycles: MPCONF196 Benchmark Energy Data Set,” J
Chem Theory Comput, vol. 14, no. 3, pp. 1254-1266, 2018, doi: 10.1021/acs.jctc.7601074.

M. Schreiner, A. Bhowmik, T. Vegge, J. Busk, and O. Winther, “Transitionlx-a dataset for building
generalizable reactive machine learning potentials,” Sci Data, vol. 9, no. 1, p. 779, 2022, doi:
10.1038/s41597-022-01879-5.

S. Chmiela, A. Tkatchenko, H. E. Sauceda, I. Poltavsky, K. T. Schiitt, and K.-R. Miiller, “Machine
learning of accurate energy-conserving molecular force fields,” Sci Adv, vol. 3, no. 5, p. e1603015,
2017, doi: 10.1126/sciadv.1603015.

S. Chmiela et al., “Accurate global machine learning force fields for molecules with hundreds of
atoms,” Sci Adv, vol. 9, no. 2, p. eadf0873, 2023, doi: 10.1126/sciadv.adf0873.

E. W. Bell and Y. Zhang, “DockRMSD: an open-source tool for atom mapping and RMSD calculation
of symmetric molecules through graph isomorphism,” J Cheminform, vol. 11, p. 40, 2019, doi:
10.1186/s13321-019-0362-7.

R. Meli and P. C. Biggin, “spyrmsd: symmetry-corrected RMSD calculations in Python,” J
Cheminform, vol. 12, p. 49, 2020, doi: 10.1186/s13321-020-00455-2.

16



[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, and G. R. Hutchison, “Open
Babel: An open chemical toolbox,” J Cheminform, vol. 3, p. 33, 2011, doi: 10.1186/1758-2946-3-33.

National Center for Biotechnology Information, “PubChem-Align3D,” 2025, U.S. National Library of
Medicine. [Online]. Available: https://github.com/ncbi/pubchem-align3d

RDKit UGM Organizers and Contributors, “RDKit: Open-source cheminformatics.”

I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit,” The International
Journal of Supercomputer Applications and High Performance Computing, vol. 11, no. 2, pp. 115—
128, 1997, doi: 10.1177/109434209701100205.

I. Foster, “The Grid: A new infrastructure for 21st century science,” Phys Today, vol. 55, no. 2, pp. 42—
47,2002, doi: 10.1063/1.1457275.

D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer, “SETI@home: an experiment
in public-resource computing,” Commun ACM, vol. 45, no. 11, pp. 56-61, 2002, doi:
10.1145/581571.581573.

D. Brookshier, D. Govoni, N. Krishnan, and J. C. Soto, JXTA: Java P2P Programming. Sams
Publishing, 2002.

A. A. Chien, B. Calder, S. Elbert, and K. Bhatia, “Entropia: architecture and performance of an
enterprise desktop grid system,” J Parallel Distrib Comput, vol. 63, no. 5, pp. 597-610, 2003, doi:
10.1016/S0743-7315(03)0003 1-6.

D. P. Anderson, “BOINC: a platform for volunteer computing,” J Grid Comput, vol. 18, no. 1, pp. 99—
122, 2020, doi: 10.1007/s10723-019-09497-9.

M. Fey and J. E. Lenssen, “Fast graph representation learning with PyTorch Geometric,” ArXiv, 2019.

S. Wang, J. Witek, G. A. Landrum, and S. Riniker, “Improving conformer generation for small rings
and macrocycles based on distance geometry and experimental torsional-angle preferences,” J Chem
Inf Model, vol. 60, no. 4, pp. 2044-2058, 2020, doi: 10.1021/acs.jcim.0c00025.

P. Tosco, N. Stiefl, and G. A. Landrum, “Bringing the MMFF force field to the RDKit: implementation
and validation,” J Cheminform, vol. 6, p. 37, 2014, doi: 10.1186/1758-2946-6-37.

G. W. Bemis and M. A. Murcko, “The properties of known drugs. 1. Molecular frameworks,” J Med
Chem, vol. 39, no. 15, pp. 2887-2893, 1996, doi: 10.1021/jm9602928.

H. Deng, T. Birdal, and S. Ilic, “PPFNet: Global Context Aware Local Features for Robust 3D Point
Matching,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), IEEE, 2018, pp. 195-205.

M. Rezaee, S. Ekrami, and S. M. Hashemianzadeh, “Comparing ANI-2x, ANI-1ccx neural networks,
force field, and DFT methods for predicting conformational potential energy of organic molecules,”
Sci Rep, vol. 14, no. 1, p. 11791, May 2024, doi: 10.1038/s41598-024-62684-3.

J. D. Westbrook, C. Shao, Z. Feng, M. Zhuravleva, S. Velankar, and J. Young, “The chemical
component dictionary: complete descriptions of constituent molecules in experimentally determined
3D macromolecules in the Protein Data Bank,” Bioinformatics, vol. 31, no. 8, pp. 1274-1278, Apr.
2015, doi: 10.1093/bioinformatics/btu789.

D. R. Koes, M. P. Baumgartner, and C. J. Camacho, “Empirical scoring with smina from the CSAR
2011 benchmarking exercise,” J Chem Inf Model, vol. 53, no. 8, pp. 1893-1904, 2013, doi:
10.1021/ci300604z.

B. D. McKay and A. Piperno, “Practical Graph Isomorphism, I1,” J Symb Comput, vol. 60, pp. 94-112,
2014, doi: 10.1016/j.jsc.2013.09.003.

17



Udthnihnid
Juwhwq UnphYyh Ujpniiyub

Utpkuuwyuljuw nunigdwi b pugjujws hwpgupljuyhtt Uninkgm futp pjubwnwght
phthwfwh umfjutitph untnddwu b Wn Eynijuyhtt hwnlmpimuutph jutjwntodw
hwudwp

Uolmunwipp wdhpyws b hwoynnuijut  phuthwnid wnlju  wnwbigpughl
dwpnuwhpufbpibphtl’ dwubwynpuwbu, pupd  npuhh  dmbyogqught ndpugibph
wybwdwywy ghubpugdwup b Unjknyuyhtt jupmgqubputnh dogphwn Yhpnisnipjun:
ZEnwgnunmpinibip JEinpniwinod Ewphbunwwb patuutinpjut Jpu hhtfuws unp
Unnbgnidubph, Judwynpuljui hwyqupyubtph hwppwlh, hyybu bwb dnbynygught
hwubdwnnm pjut junwpbjugnpsyws qnpshputph pwldwh n quybpugdwi Yypu:

Upuunwiiph hhtfuwlut buyyunuikpt b

e Lwhiwgsh] judwynpuljut nbumputtpny hwoyuplubph ypu hhtfujws hwppwuy
pywtiinughtt phthwlwb hwoquplubph ppuljubugdwi hwdwp:

e Upulty wlup] mumgiwl wgnphpd  UnjEympughtt  junmgjuspubph
wpynibwybn b mbnEjunduljut ptupoipyut hwdwp:

e Uuwbndt) b hpwwywpwll udnikynmuyht tukpghwubph jujtwbwdwy wdjujubkph
puquitkp’ JEinpniwbwny ghqubdub (“drug-like”) Unjiynyubph puqunippub gpu:

e Upulty Whipkwjuljwi numgdwi dnnljikp tnp nyjuubph puquitkph hhtwi Jpu
Unjnyuyght Eutipghwutph £2qphwn jubthiwnbudwt hwdwp:

e Upull wpwqugnps U &qphn qnpshp  upttanphwyny  &oqpunws  uheht
punwlniuwght skndw (SC-RMSD) hwoqupljuwts hwdwp:

e Qhubpught] U hpuwwwpwlly Unjkmpuyhtt jupmgjusphbph wdjujubph puqu’

uhutnphuyny £oqpunjus Uhohtt punwlniuwghtt sbnmd hwpdwplnng gqnpshpubph
hudtdwnm pjut hwdwp:

Unttwpinumpuit  wpwohtt  qumd  tbplluyugdl; i hbnwgnuunipjub
wpphwlwiunmpiniip, hwoynnuljut phithwh phuquyuemd dbpkiwjulju niumgudwt
Unphjitph wnel  Swpwgws hhtfuwlui  dwpunwhpwdbpubpp b woluwwnwuph
hywwnwlubpn:

Bpypnpn gpothup tdhpyws k SDDF (Smart Distributed Data Factory) judwynpuljut
ntumputtpng hwoquplutph hwppwlh thkpuyugdwip, npw Swpunupuybnmpuin b
twpiwgsldwt hhfuww uljqpniuputipht:

Bppnpy qumd ukpuyugdnud Ewljnpy niumgdwt hwdwluwpgp: Uwubwnpuybu
nhunwplymd £ gpudpuyhtt uljpntiwghtt gmugkph (GNN) Jhpwunbihnipmiip dnjknuyught
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tutipghuyh juihwwnbudwt hwdwp, nphg htinn ubpuyugumd E wljnpy niunigdwut
hwdwlupgp  tnp  Juomguédpibph phwpdwb  wwppbp  Wpngiiph U gpuig
hwubdwwnmpjui htn  dhwuht: Uju quod  bwb  phbwplymd E dnjEyngught
phuwdhluyh (MD) Jpw hhfujus Junmgusputph ptnpmput dnnbkgmdp b gpu
wqpigmpemup MD-h jumbmput Jpu: Fnmput wdihnthymd E wppuwnwbph
pupwugpnid ghubpugws wnfjujutph pwquubph, dpwldws Unpljubph, husybu twb
SDDF huippwljh pupwghly yhdwulh b hinwuwpubph thpjuyugdudp:

2nppopy qoijup YEuwnpnbwimd Eoupdbnphwng £ogpudus RMSD  (SC-RMSD)
hwoqupluwt pughpubph Jpu: Ujh tkpiuyugumd L FlashRMSD qopshpp, npp
twpwwnbuws Lt SC-RMSD-h - wipgmbwdbnn  hwpqupydwtt hwdwp: Upju  glund
hpuwjwiuwgymd k SC-RMSD hwpywplynn gnpshputph hwdwywpthwl hwdbdwnwljub
Ybpmdmpymi pubwphm] twh wpwbdht nhwpkp: Pugh wyy, tkphuyugymd
FlashRMSD qnpshph wwpq phyuyimup’ dhihuhquglus SC-RMSD-h - hupdupluwb
hwdwp, npp hwukdwwnynd £ jujunpkt Yhpwnynn wy) qupshputph b Uninkgnidubinh htwn:

Zhugkpnpny gllumd wdhnhymu ko wnbiwnumpejui hhfuwlwh wpynibpubpp b
Juwnwpjus ukpnypnudubpn:

Uoluwtnwiph  ghnwljwi  tnpoyp wwpnibwlnn wpwyl] Juplnp npoypbbkpp
htwnljuwgb ko'

e  SDDF huppul: Ujnh] numgdub b judwynpuljub nkumputtipng hwyqupljutph
tnpupupulumb  htnkgpmud’ hwnml  hwpdwpbgus DFT-h Ypw  hhttujws
Unjkyniuyhtt myjuukph giubpugdw hwdwp:

e Ulhwnhy mumgmu: Swppbkp dwpnwpuybnmpmbaibpny] GNN  dnpkjubkph
hwdwjudph (GeneralConv, PNAConv, GENConv, TransformerConv,
ResGatedGraphConv) ubpppmud’  dbkpbtugyuljubt mumgdwt b dnjklnyught
phuwuhlugh Ypw bhhdfugué dnnbkgmdubph htin hwdwunbn® tnp Unkyniuyght
Jupmgquéspubph ptnpnipjubt hwudwnp:

e  Unp wjjwjitph puquikp b Unghutp: ENAMINE wjujutph puqujhg unnugqus
pupdpnpul dnjkynuuyghtt jupmguspubph b Eutipghwbph wfjuutph puqukph
b npuig hpuwt Jpu dwpqus &£ogphn dhpkhwjulut numgdwt dnpkjubph
hpuwwpulynmy:

e FlashRMSD gnpshp: Uhutnnphuyny &o2gpundué RMSD-h hwipdupljdwi tnp wignphpd,
npt oqunugnpémd L hwdwwwpthwl] wwndwjhtt Wjupwugphsubp (descriptors),
hisybu twb htwnphpug npnidwi (backtracking) b bundwh (pruning) Uninkgm tfubip’
hnuwhmpint b pupdp wpuqugnpdmpnit wwywhnybne hwdwn:

e SC-RMSD utuphtugh hudtdwwnmubwd Jepymémpimb: CCD/BIRD wjjujikph
puqubttph ypw hhdudus, dniEynughtt junnmgjuspubph hwdwwyuphul puqu’
gqnpShpubph wpuqugnpdmpiniipn b hntuwhmpniip guwhwnbnt hwdwp:
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3akmoveHue
Anrtyusn Baara HopukoBuu

INomxompl MAaIIMHHOTO OOYIEeHMA M PACIIPeie/ICHHBIX BEIMUCICHHI /I TeHepaliuy KBaHTOBO-
XMMHUIEeCKHX JAHHBIX U IPeICKa3aHNA MOJEeKYJIADHBIX CBOKCTB

Pa6ora mocBsmeHa KIoueBbIM ITpo6GIeMaM BBIYMCIUTENBHON XUMHH, B YaCTHOCTH,
IIMPOKOMACIITAGHOM TeHepallMM BBICOKOKAYeCTBEHHBIX MOJIEKYJIAPHBIX JAaHHBIX M TOYHOMY
aHaJIU3y MOJIEKYJIAPHBIX CTPYKTYyp. MccremoBanue cocpeioToueHO Ha pa3paboTKe U BaTHJAL NN
HOBBIX IIOAXOZIOB, OCHOBAaHHBIX HAa HCKYCCTBEHHOM MHTe/UIeKTe, ILIaTGOPMBI  JJIA
JOOPOBOJIBHBIX ~ BBIYMCJIEHMH, a TaKXe yCOBEPIIEHCTBOBAaHHBIX HMHCTPYMEHTOB LA
MOJIEKYJIAPHOTO CpPaBHEHHA.

OcHoBHBIe 1e11 PaboThL:

. CHPOEKTI/IPOBaTB l'IJIaT(bOpMY Ha OCHOBE ,ZLO6POBO)II:HI:IX BBIUMCIEHUN A7 IIpoBE e HUA
KBAaHTOBO-XMMHWYE€CKHX PACIETOB.

e  PaspaboraTh ajgropuT™M aKTUBHOTO OOy4YeHHA IIA 3PPEeKTUBHOTO U MH(OPMATUBHOTO
0T60pa MOJIEKYIAPHBIX CTPYKTYP.

. CoszaTh 1 OIyGJIMKOBaTh IIKMPOKOMACIITaOHblEe (a3bl JAHHBIX MOJIEKYJIAPHBIX DHEPTHIi,
yzess ocoboe BHUMaHYe pasHoo6pasuio hapmaxonomobusix (“drug-like”) moexyir.

. PaBPa6OTaTI> MOZe/I1 MAIITMHHOTO 06y‘I€HI/IH AJIA TOYHOI'O IIpeACKa3aHUA MOJIEKYJIIPHBIX
BHePI‘I/If/'I Ha OCHOBE HOBBIX 6a3 AAHHBIX.

e  PaspaGoTaTe OBICTpBIf K TOYHBI HHCTPYMEHT /[ pacueTa CpeAHEeKBAZPaTHIHOTO
OTKJIOHEHVSI C IOIIpaBKoi Ha cummerpuio (SC-RMSD).

e  CreHepupoBaTh U OIIyGJUKOBaTh 6a3y HAaHHBIX MOJEKYJIAPHBIX CTPYKTYp IJI1 CpPaBHEHHSI
WHCTPYMEHTOB, BBIYMCIAIONIUX CpeJHEKBaJpaTUYHOe OTKJIOHEeHHe C IIONPaBKOM Ha
CHMMETPHIO.

B nepBoﬁ TJIaBe aucceprauuy IIPpeACTaBI€HBI aKTYyaJIbHOCTh MCCI€NOBaHUA, OCHOBHBIE
HPO6JICMI>I B 00JaCTV BBIYMCIUTEIBHOMN XHMHUH, C KOTOPBIMM CTaJKHBAIOTCA MOZEIN
MAITUHHOTI'O 06y‘1€HI/15I, U 1mean PaGOTBI.

Bropas riaBa nocsseHa mpeACTaBIeHUIO IIATGOPMBI 06poBoabHBIX Berurciaenuit SDDF
(Smart Distributed Data Factory), ee apxureKType 1 OCHOBHBIM IIPUHITUIIAM IIPO€KTHPOBAHIS.

B Tperheil rmaBe mpejCTaBIAeTCA CHCTeMa aKTUBHOTO oOOy4eHuda. B wuactHOCTH,
paccMarpuBaerca NpUMeHHMOCTh rpacdoBsix HeifponHbIX cereit (GNN) mif mpezackasaHus
MOJIEKYJIAPHOM SHEPIUH, IIOCJIe YeTOo IPeACTaBIAeTCA CUCTeMa aKTUBHOTO O0ydYeHUs BMeCTe C
Pa3IMYHBIME MeTOZaMM OTGOpa HOBBIX CTPYKTYp M HX CpaBHeHHeM. B 9Toil IiaBe Takxe
obCcyxZaeTcss MeToZ, OTOOpa CTPYKTYp Ha OCHOBe MOJeKy/IfpHOii muHamuku (MJ) u ero
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BaMAHMe Ha crabmisHocTs M/, I'1aBa 3aBepinaeTcs npe/icraBjieHreM CreHEPHPOBAHHBIX B XOZe
paboTh 6a3 JaHHBIX, Pa3pabOTaHHBIX MOZeJell, a TakXKe TeKylIero COCTOAHMUA U IePCIeKTHUB
miardopmsl SDDF.

UYerBepras rmaBa ¢Qoxycupyercas Ha 3agadax BberumciaeHus RMSD c mompaBkoit Ha
cummetpuio (SC-RMSD). B neit mpezncrasnen nuctpymenT FlashRMSD, npegHasHaueHHBIH 111
adpdexrusHoro BerunciteHus SC-RMSD. B 3Toif riaBe IPOBOAUTCA BCECTOPOHHUIA
CpaBHUTE/IbHBIN aHAaIU3 WHCTPyMeHTOB A BbruuciaeHus SC-RMSD c o6cyxzeHueM Takxe
OTZENBHBIX CilydaeB. KpoMme TOro, IIpeACTaBlIe€HO IIPOCTOE PpaCIUIMpeHHe WHCTPyMeHTa
FlashRMSD pas Bsramciaenus muHumusupoBanHoro SC-RMSD, koropoe cpaBHuBaeTcs ¢
IIXPOKO UCIOIb3yEeMBIMU APYTUMHU UHCTPYMEHTAMHU U MOAXOJAMH.

B maToii riase 0606II.LHIOTC§I OCHOBHBIE Pe3YJIbTAThI JUCCEPTATVN U1 CAEJIaHHbIE BKJIAIbI.
HauGonee BaxkHbIe OIOXKEHMS Pa6OTLI, cozepxKamuye HayIHYyI0 HOBU3HY, CIeLyIOIIue:

e IInardopma SDDF: MlHHOBanMOHHAA MHTETpAlUd aKTUBHOTO 00y4eHHS U TOGPOBOIBHBIX
BI)I‘II/ICJIeHI/II;’I, CIIeITVAJIbHO afZanTUPOBAHHAA [JIA T'€Hepauuunu MOJIeKy]IS[pHBIX JaHHBIX Ha
ocuose DFT.

e AxtuBHoe OGyuenme: Bruempenue ancam6ma GNN Mogeneil ¢  pasTMIHBIMHU
apPXUTEKTypaMu (GeneralConv, PNAConv, GENConv, TransformerConv,
ResGatedGraphConv) coBMeCTHO C IOAXOZaMHM Ha OCHOBe MAIIMHHOTO OOydYeHHI MU
MOJIEKY/IAPHOH AUHAMUKY I/ 0T60pa HOBBIX MOJIEKYJIAPHBIX CTPYKTYP.

e Hossle Baszsr [Jlanusx m Mogemu: [Iy6nukamus BBICOKOKa4eCTBEHHBIX 6a3 JAaHHBIX
MOJIEKYJIAPHBIX CTPYKTYP U SHEpPruii, moiay4eHHsx u3 6a3sr ganubix ENAMINE, a takxke
TOYHBIX MOJieJleif MalIMHHOTO 06ydeHUsA, 00y YeHHBIX Ha UX OCHOBe.

e  Uucrpyment FlashRMSD: Hossiit axropurm mis Bsrauciaenus RMSD ¢ mompasko# Ha
CI/IMMeTpI/IIO, I/ICHO]ILSYIOH.[HI?I KOMILZIEKCHBbIE aTOMapHLIe ,Z[eCKPI/IHTOPI)I, d TaKXXe IIOAXObI
obpatHoro otciexusanus (backtracking) u orcevenus (pruning) maa obecrmedeHus
HaAeXHOCTHU U BBICOKOI;'I HPOI/ISBOHI/ITQHLHOCTI/I.

o  CpaBuurensubrii Amamm3 Merpuku SC-RMSD: KommiexcHas 6a3a MOJIEKYJISPHBIX
cTpyKTyp Ha ocHoBe 6a3 gaHHbIX CCD/BIRD g4 OlleHKM HaJeXXHOCTH MHCTPYMEHTOB U
clydaeB ux c6os.
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