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Relevance of the topic

Moment closure approximation is a mathematical technique used to simplify complex
dynamical systems by reducing an infinite or high-dimensional set of equations to a
manageable size, which may allow obtaining analytical equations that approximately predict
the dynamics of the stochastic system by estimating the changes of different moments of its
variables over time. The core idea is to express different orders of moments and their
changes with the moments of other orders, thus obtaining a closed set of equations. If we
model the system as discrete time, this set contains ordinary iterative equations, if we model
it as continuous time, it will consist of ordinary differential equations. This system of
stochastic equations then becomes solvable and tractable after higher orders are ignored,
thus, closing the system of equations. The question of which orders will be ignored highly
depends on the specifics of the problem. If the setup is such that the distribution of variables
under discussion is close to gaussian, we may successfully approximate the system with two
moments, if there is a skewness in distributions, we may need three moments, and if the
distribution has fatter tails, we may even need higher order moments.

In many stochastic models, each moment (a statistical measure of the system’s state) evolves
in time and is coupled to other moments, both lower and higher in the most general case.
Without approximation, this leads to an endless hierarchy of equations. Moment closure
provides an educated guess or formula to truncate this hierarchy, thereby obtaining a finite
set of equations that can be analyzed or solved. This approach is crucial in mathematical
modeling because many real-world systems are too large or complex to handle exactly. By
using approximations, we can capture the essential behavior of these systems without
simulating every detail. In summary, moment closure approximations make it possible to
analyze complex biological and artificial systems in an analytical way, giving a framework
analyze the system without exhaustive simulations. Such approximations are important in
complex dynamical systems, as they provide a balanced approach integrating empirical
insights and theoretical modeling, allowing researchers to gain insights that might otherwise
remain hidden in those complex models.

¢ Relevance to population genetics: In this thesis moment closure approximation
has been used as a novel tool in evolutionary biology for modeling dynamics in
finite populations where stochastic effects are significant. The quasispecies theory
(infinite population size Eigen and Crow-Kimura models) is popular to describe
both virus evolution, as well as it is one of the key models of interdisciplinary
research, from the virus and cancer to the artificial intelligence [1, 2].
We solve exactly a series of models, related to the mutator phenomenon. In many
classic models such as Eigen or Crow-Kimura an infinitely large population is
assumed to simplify analysis, leading to deterministic equations. Moment closure
relaxes this assumption by capturing random drift and fluctuations without needing
an intractable full stochastic simulation. The key idea is to truncate the hierarchy of



equations for the distribution’s moments, focusing on the first few (such as mean
and variance) to obtain a closed system. This yields approximate equations for
quantities like mean fitness or allele frequency that remain accurate for finite
populations.

Using this approach, we can investigate different phenomena that arise in some
models of evolutionary dynamics under more realistic conditions. Important factors
like mutation rates and recombination are naturally incorporated as
hyperparameters that influence the low-order moments of the population’s state.
For example, in the thesis a moment closure method was applied to the Wright-
Fisher model[3] and a finite-population Crow—Kimura model (a quasispecies-type
genetics model) with a single-peak fitness landscape[5]. This allowed calculation
of finite-population corrections (e.g. to mean fitness) that earlier infinite-population
methods could not capture. In general, moment closure provides a way to quantify
how random genetic drift interacts with selection and mutation, offering analytical
insight into stochastic evolutionary outcomes that would otherwise require
intensive simulations.

One notable outcome of the method is the approximation of fixation probabilities
in finite populations under the Wright-Fisher model of population genetics. The
fixation probability is the chance that a new mutant allele eventually takes over the
entire population. Moment closure techniques can accurately approximate this
probability across different regimes, effectively bridging the gap between classical
infinite-population predictions and the realities of finite, random drift. By obtaining
corrections to quantities like mean fitness and fixation likelihoods, the moment
closure approximation enriches our understanding of evolutionary dynamics in
finite populations and complements more exact (but less tractable) stochastic
formulations [4].

Relevance to evolutionary game theory: Evolutionary game theory extends
population biology concepts to situations where fitness is frequency-dependent —
an individual’s success depends on interactions (strategies) within the population.
In these models, the payoff (fitness) of a strategy changes with its frequency, and
classical deterministic approaches lead to the replicator equation for infinite
populations. Moment closure approximation proves valuable here by enabling
tractable analysis of the stochastic Moran process, a finite-population birth—death
model of evolutionary games. Researchers often formulate evolutionary games in
finite populations first (capturing randomness in reproduction and death events),
and then consider the infinite-population limit for average behavior. The moment
closure method allows one to derive equations for the mean frequency of strategies
and their variance in the finite setting, providing insight before taking that infinite
limit.

A central concept in evolutionary game dynamics is the fixation probability of a
strategy — for instance, the probability that a single mutant strategy will eventually
take over a population of individuals playing another strategy. This is analogous to
fixation of a mutant allele in genetics, and evolutionary games in finite populations
also exhibit such fixation phenomena. Using moment closure, the thesis derived a



second order analytical approximations for the mean number of individuals playing
each strategy over time, as well as the probability that a given strategy fixates,
under the Moran process dynamics [4]. The method computes second-order
corrections to the replicator equation (which describes an infinite population’s
average behavior) by accounting for finite-population variance. In practical terms,
this means we can estimate how likely a strategic behavior is to dominate purely
due to stochastic effects, and how the population state fluctuates around the
deterministic prediction.

These results have important implications for modeling strategic interactions in
finite populations. They show how random drift and finite size can alter the
evolutionary outcome of games compared to ideal infinite scenarios. In the thesis,
the moment closure-derived strategy dynamics were cross-validated using an
independent Hamilton—Jacobi approach, confirming their accuracy. Notably, this
was the first application of moment closure techniques in evolutionary game
theory, demonstrating high accuracy in capturing the stochastic fixation behavior
of strategies. By providing a way to calculate fixation probabilities and trajectory
variances, the approach deepens our understanding of frequency-dependent
selection in fields ranging from biology to economics. It highlights the broad
relevance of moment closure in any domain where game-theoretic interactions are
subject to random fluctuations due to finite agent numbers.

Relevance to artificial intelligence and Hebbian learning: Beyond biology,
moment closure approximation has been applied in artificial intelligence,
particularly to understand learning dynamics in neural networks. Hebbian learning
is an unsupervised learning principle inspired by neurobiology, often summarized
as “cells that fire together, wire together.” It posits that synaptic connections
between neurons strengthen when the neurons are active simultaneously. Unlike
backpropagation-based learning, Hebbian learning does not require labeled data or
an explicit loss function — it is considered a biologically plausible mechanism by
which the brain might self-organize to detect patterns. This makes Hebbian models
attractive for tasks like pattern recognition, memory modeling, and dimensionality
reduction. However, a well-known challenge in basic Hebbian learning rules is
unbounded growth of synaptic weights (instability), which requires modifications
to keep the system stable.

Oja’s rule is a prominent Hebbian learning model that addresses this instability[6].
It modifies Hebb’s rule by normalizing the weight vector, achieved by adding a
negative second order regularization term to the update rule: w;(t + 1) = w;(t) +
alx;(O)y — y2w;(t)]. It effectively performs a form of principal component
analysis (PCA) on the inputs: the network learns a lower dimensional projection
that retains maximal input variance.

In the thesis, moment closure approximation was applied to analyze the stochastic
dynamics of Oja’s rule in a neural network. By focusing on the first two moments
(mean and variance) of the synaptic weight distribution, the analysis derived a
closed-form relationship linking the learning parameters to the system’s behavior.
In particular, a formula was established that connects the steady-state variance of



the synaptic weights to the network’s learning rate (for a given data distribution),
using moment equations instead of tracking the full weight distribution. This result,
validated by simulations, showed explicitly that higher learning rates lead to larger
weight variance at equilibrium. In other words, there is a quantitative trade-off:
making the learning rate large speeds up learning but also increases the
randomness (variability) in the learned weights, which reflects reduced stability.
These findings have practical significance for machine learning algorithms inspired
by Hebbian principles. Because Hebbian learning lacks an objective loss function,
one cannot directly apply standard adaptive learning-rate schedulers that are
common in backpropagation-based networks. The moment closure analysis
provides an alternative guideline: by understanding how the learning rate affects
outcome variance, one can tune this parameter to ensure stable convergence of the
network. For example, if the derived formula predicts that a certain learning rate
will blow up the weight variance, one might choose a smaller rate to keep the
network in a stable regime. This insight suggests the possibility of designing
adaptive learning-rate schedules for Hebbian or PCA-like networks grounded in
moment-based variance analysis. Indeed, the thesis proposes that adjusting learning
rates based on the variance of synaptic weights (as calculated via a rolling window)
could help maintain stability in Hebbian-inspired neural systems. Such an approach
is analogous to how learning rate schedulers are used in deep learning, but tailored
to unsupervised, self-organizing models.

More broadly, the success of moment closure in analyzing Oja’s rule illustrates its
utility in Al. It shows that techniques originally developed for population biology
can shed light on the dynamics of learning algorithms. In fact, other researchers
have applied moment closure methods to reinforcement learning problems as well
— for instance, to analyze stochastic multi-agent Q-learning and bandit algorithms,
proving that these learning processes can reach a steady state with finite variance.
The cross-disciplinary application to Hebbian learning in the thesis further
confirms that moment closure approximation is a versatile tool. It enables Al
researchers to derive analytical results (like variance formulas or stability criteria)
for complex adaptive systems, much as it enables biologists to solve for gene
frequency dynamics in finite populations.

Additionally, this approach has relevance for autonomous robotics research, as the
windy-gridworld serves as a prototypical environment for exploring how agents
adapt to varying and uncertain conditions. By using the moment closure to
approximate higher-order effects, we were able to realistically model real-world
challenges such as unpredictable wind gusts and the movement of an agent in such
environments[7].

Aim of the work

The thesis proposes a novel approximation technique by specifying the approach in
previously more loosely defined moment closure approximation that is particularly helpful in



stochastic Markov processes studied in the thesis. The identified objectives around which
significant results were achieved are the following:

e Developing a versatile moment closure method for analyzing stochastic dynamics
in finite-population evolutionary models.

e Bridging finite and infinite population approaches by deriving corrections to
classic deterministic models and validating them numerically.

e Extending the approximation to evolutionary games, capturing fixation
probabilities under frequency-dependent selection.

e  Applying the developed method to Al, particularly Hebbian learning (Oja’s rule),
to study weight variance and stability in unsupervised models.

Highlighting interdisciplinary potential, demonstrating how a single mathematical framework
can inform both biological and machine learning research.

The practical significance of the work

The results presented in this thesis have potential applications in diverse areas of both
theoretical and applied research. On the evolutionary side, moment closure approximation
can help develop more precise genetic algorithms by modeling stochastic effects and finite-
population corrections, which are often neglected in classic large-population assumptions.
These refined algorithms can be beneficial in problems such as industrial optimization, drug
discovery, and bioinformatics, where adaptive search strategies must account for random
drift or strong selection.

In evolutionary game theory, the approach clarifies how strategies may fixate under realistic
conditions, informing economic, ecological, and computational models of multi-agent
interactions. This can be especially relevant for studies of social networks and public goods
games, where population sizes are not trivially large and strategic decisions evolve
dynamically, and can also have applications in the study of cancer development where
healthy cells are in competition with the cancer cells.

In artificial intelligence, the methodology has already shown promise by connecting the
stability parameters of the network with the tunable hyperparamers in Hebbian learning. A
precise understanding of learning rate effects and parameter fluctuations can guide the design
of neural architectures that avoid can more robustly adapt to changing inputs and can self-
optimize the learning rate during the learning process itself. We have also shown that the
method can have practical application in robotics where it can help us predict the trajectory
of an agent in a stochastic environment.



Methods of investigation

Diverse methods have been used while developing this study coming from different fields,
including but not limited to probability theory, mathematical analysis, linear algebra,
stochastic processes, machine learning, neural networks, theoretical physics and other related
fields.

All analytical results have been validated by comparison with computer simulations. Python
with respective libraries have been used for developing this study for the simulations of
stochastic processes and the trainings of neural networks.

Publications

All results represented in the thesis have been published in peer reviewed journals. The
results are published in 7 articles (5 were published in international journals included in the
lists of Scopus and Web of Science, and 2 were published in local journals). The complete
list of the publications is given at the end of the synopsis.

Approbation of the results

The results were presented in the “XVIII International Annual Scientific Conference of
Russian-Armenian University” and in a scientific seminar organized by Institute for
Informatics and Automation Problems of NAS RA.

Structure of the work

The thesis has an introduction, 4 chapters, conclusion and bibliography.

1. Introduction describes the models that have been studied in the thesis, main
challenges that arise during the mathematical modeling of their dynamics and the
aim of the thesis.

2. Chapter 1 introduces quasispecies models, and the work we did for solving the
cases of randomly changing fitness landscape with recombination and the mutator
model with asymmetric transitions.

3. Sections 2.1-2.4 discuss the Wright-Fisher finite population evolution model and
the work we did for estimating the fixation probability under this model for static
and randomly changing fitness landscapes.

4. Section 2.5 introduces our proposed form of moment closure approximation that
utilizes the master equation.

5. Sections 2.6-2.13 discuss our solutions to the dynamics of Wright-Fisher model
and finite population version of Crow-Kimura model. The results are discussed for
both two and three allele models, and the cases of small selective coefficients and
single peak fitness Crow-Kimura model are described separately.



6. Chapter 3 introduces out results in finite population evolution games. Both the
moment-closure approach and Hamilton-Jacobi approach for the Moran model are
discussed.

7. Sections 4.1-4.4 describe our work done on the scope of Hebbian learning. This
part of the thesis derives the closed form solution that connects the steady-state
variance of the models parameters with the learning rate with the help of a simple
linear equation.

8.  Section 4.5 the modeling of the movement of an agent in a stochastic environment
with the moment-closure approach.

Main results of the work

Each chapter the thesis focuses on a specific application domain and presents the core results
achieved. Below is a summary of the main results from the thesis:

e Analytical Corrections for Finite Populations: One of the primary results is the
successful application of moment closure to finite population genetic models,
yielding analytical insights that go beyond classic infinite-population theories. We
begin by constructing a moment closure scheme for the Wright-Fisher model [5],
which allows us to account for finite-population sampling effects without resorting
to a full-blown stochastic treatment. First, we write down the master equation that
governs how allele frequencies change over each iteration. We introduce the
probability distribution functions P, ; (n) having the given set of integers at n-th
moment of time.
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Here my; is the mutation probabilities from the I-th to j states, while r; are the
fitnesses. M(iy, ...i1;j1,.-ju) is the final transition probability of going from the
state described by integers iy, ...ir, to the described by integers ji, ...j. during a
single iteration. Then, instead of trying to solve the master equation exactly, we



calculate the first two (and sometimes three) moments—namely, the mean,
variance, and skewness of the allele distribution—and approximate higher
moments in terms of these lower ones. Doing so, we get an iterative rule for the
first and second degree moments of the variables in the system.
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Where the moments are defined as
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In equation (2) we used the following forms for partial derivatives:
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These results were validated by comparison with numerical results obtained
with the help of computer simulations of the Wright-Fisher process. The
comparison with the numerical results for the 2 allele case can be found in
Figure 1 and Figure 2. The results for the 3 allele case are represented in the
thesis.

The same form of the moment closure approximation is also tested and
validated for the finite population Crow-Kimura model.
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Figure 1: Two allele Wright-Fisher model given by Egs. (1), w; = w(x) =

x(1+s)+u(1-x)

s ,x =1i/N,u is the mutation rate to the mutant, (1 +s) is the mutant

fitness. The average number of mutants Q =< i > versus the time for two allele model
with N = 100,u = 0.01,s = 0.01, numerical result and the result obtained with the
moment closure approach.
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Figure 2: Two allele Wright-Fisher model given my Egs. (1), w; = w(x) =

x(1+s)+u(1-x)

s ,x =1i/N,u is the mutation rate to the mutant, (1 +s) is the mutant

fitness. The variance versus the time for two allele model with N = 100,u = 0.01,s =
0.01, the low dashed line corresponds to the second degree moment closure
approximation, the high dashed line-to three moment approximation. The smooth line

corresponds to the numerical results obtained with the help of computer simulations.
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Figure 3: The dynamics of variance for the Prisoners Dilemma game with constant payoff
matrix (a,b,c,d) = (0.5,1.5,0,1) with w = 0.9, but different number of replicators and
initial conditions. The first plot is for N = 200,i, = 40, the second one is for N = 400,
ip = 20 with N being the number of all replicators, and i, being the initial number of
replicators with the first strategy. The solid line represents the numerical result while the
dashed line is the result obtained with the moment closure approximation.

¢  Results for quasispecies models: In addition to this, we also developed and solved
evolutionary quasispecies models that incorporate mutator genes, asymmetric
mutation rates, and recombination on fluctuating fitness landscapes. We proposed a
two-state quasispecies model in which a special gene switches between a normal
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(wild-type) and a mutator allele [2], leading to different mutation rates and fitness
functions. Employing a Hamilton—Jacobi equation approach, we analytically
derived the population’s mean fitness and steady-state distribution for large
genome length. A key outcome is the emergence of a mutator phase, in which a
high-mutation allele persists and alters the system’s phase structure. We also found
an interesting phenomenon where sufficiently large genomes exhibit oscillatory
and non-smooth dynamics, indicating a transition that undermines the single-
equation approximation.

We also extended this study to include recombination and random switching in the
fitness landscape [1]. By combining Crow-Kimura-like dynamics with
recombination, we derived near-exact steady-state solutions under various
symmetry conditions, sometimes mapping the system onto a simpler effective
fitness model. We showed that recombination may raise or lower mean fitness
depending on the epistatic properties of the effective landscape: negative epistasis
favors recombination, whereas non-negative epistasis can diminish its benefit.

e Derivation of Finite-Population Strategy Dynamics: In the context of
evolutionary game theory, we presented the first application of moment closure
approximation to stochastic game dynamics in finite populations. Focusing on the
Moran process (a common model for finite-population evolution of strategies,
where individuals are randomly replaced over time proportional to fitness), the
work derived second-order analytical approximations for the trajectory of game
strategy frequencies [4]. In practical terms, this means the thesis obtained iterative
equations that describe how the expected number of individuals playing each
strategy changes over time, along with how those numbers vary due to random
drift.

The equations were setting iterative rules for the first and second order moments of
the process variables at timestamp n, denoted by Q@ and Q,,, respectively and had
the following form.
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where F(Q) and B(Q) are the probabilities of increase and decrease in the numbers
of the replicators of the first type respectively

These equations can be seen as a corrected version of the replicator equation for
finite populations: they reduce to the classical replicator dynamics in the infinite
population limit, but include additional terms (of order 1/N, where N is population
size) that account for stochastic fluctuations.

The accuracy of these moment-closure based equations for evolutionary games was
rigorously tested. The process was simulated using numerical methods and the
numerically estimated moments for different parameters of the model was
compared with the moments obtained through the iterative rule. The comparison of
analytical results obtained by equation (5) and numerical results obtained by
computer simulations is represented in Figure (3).

Analyzing Stochastic Hebbian Learning: Moving to the domain of machine
learning, the thesis applied moment closure to analyze the learning dynamics of
Oja’s rule, which is a classic model of Hebbian learning. Oja’s rule is an iterative
algorithm where a synaptic weight vector is adjusted in proportion to the neuron’s
output and input (Hebb’s principle), with a normalization term that ensures the
weight vector length remains constant (preventing unbounded growth). When
Oja’s rule is used on streaming data (inputs coming in one by one, possibly with
some noise), the update process is inherently stochastic. The main result here was
the derivation of a closed-form relationship linking the learning parameters to the
long-term behavior of the system, using a moment closure approximation.

By considering the first two moments of the weight distribution (mean and
variance of the weights) and closing the system at the second moment, the thesis
obtained an analytical expression for the steady-state variance of the synaptic
weights as a function of the learning rate and the properties of the input data
(correlation of the input features) [6].

8lpl ®)

In simpler terms, this result quantitatively describes how “noisy” or variable the
learned weights will be after a long training time, depending on how aggressively
the network is learning. The analysis showed explicitly that if you increase the
learning rate in Qja’s rule, the variance of the weight values at equilibrium
becomes larger linearly. This makes intuitive sense — a higher learning rate means
bigger jumps with each update, leading to more fluctuation — but the thesis
provided a precise formula for this relationship. The result was backed by
simulations of Oja’s rule: the theoretical predictions of weight variance matched
the empirical variance observed in simulations across different learning rates,

14



confirming the validity of the moment closure approach in this context. The
numerical simulations were carried out by training the model on a synthetic data
using Python programming language.

To validate the result of (6), we have created a simple experimental setup. Initially,
we set w; = 0 and w, = 1. At each iteration, we generate a new data point from
the bi-variate Gaussian distribution. Then we train for sufficiently long iterations
until the steady state distribution is reached. We repeat this training process from
scratch 500 times, save the final weights after each training process and calculate
the variance of these 500 weights. Since the sign of the steady state solution
depends on the initial weights every time we set the same value for the weights at
the beginning. The same variance will be obtained for other initial conditions as
well, while the mean steady state value may differ in sign. Then we repeat this
same process for different learning rates to capture the relation between the final
variance of the weights and the learning rate a.

This same process is repeated for different sets of data points generated from
multivariate normal distribution with different correlation coefficients p to check
the dependence of variance on correlation found in (6). Comparisons of the
variances with the analytic values obtained in the previous section are represented
in Figure. In those figures we can see that for values of learning rate which are in
the range conventionally used in practical applications our equation (4.10) very
accurately describes the variance of the parameters of the model at the steady state
of the system after sufficiently long process of training.

Understanding the trade-off between learning speed and stability is a key insight
from the above result. The thesis highlighted that while a larger learning rate
allows the network to adapt faster to data, it also injects more randomness into the
weight updates, potentially causing the weights to bounce around a noisier
equilibrium (which could be seen as a form of instability in learning). This insight
is significant for practitioners of machine learning who use Hebbian-like learning
rules or other stochastic methods without a clear objective function.

One practical proposition emerging from this work is the idea of an adaptive
learning-rate strategy for Hebbian learning. Since the moment closure analysis
provides a way to calculate or estimate the current variance of weight changes, one
could design the learning algorithm to adjust its learning rate on the fly: if the
variance (instability) grows beyond a certain threshold, the learning rate could be
reduced to stabilize learning. Conversely, if the variance is very low (indicating
perhaps slow learning or convergence), the learning rate might be increased
slightly to speed up progress.
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Figure 4: If we train the system from scratch many times and calculate the variance
of the final weight wy, it will be very close to the analytically calculated value of
(6) for learning rates that are sufficiently small for converging. Here it is checked
for 4 different correlation coefficients, both positive and negative, thus showing the
robustness of the result.

Analyzing the movement of an agent in a stochastic environment: In addition,
the thesis demonstrates an application of the moment closure method in the windy-
gridworld problem, a well-known benchmark in reinforcement learning [7]. In this
environment, an agent navigates a grid where “wind” exerts a stochastic influence
on its movements, causing random drifts that deviate the agent from its intended
path. By formulating the agent’s position distribution and velocity increments
through the master equation framework, the moment closure approximation yields
efficient estimates of both mean trajectories and higher-order statistics. These
analytical results are validated against simulation data, showing that second-order
approximations can capture critical features of the environment’s randomness more
accurately than simple first-order or deterministic models.

The implications for robotics are significant, as windy-gridworld environments
model the type of stochastic disturbances common to real-world robotic
applications—such as aerial drones subject to sudden gusts or ground robots
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navigating uneven terrain. Employing a moment closure approach enables one to
calculate closed-form updates for positions, velocities, or control signals without
extensive sampling.

In addition to estimating the dynamics of the second moment (variance) with the
help of the moment-closure technique, we also validated that the usage of the
second moment in the equations also significantly improves the estimation of the
first moment yielded by the first order approximation. This is an important result,
further indicating that including higher order terms in the closed set of equations
also improves the accuracy of the estimation of lower order moments. See Table 1
for the comparison.

1st degree 2nd degree
N Hsteps approximation MAE approximation MAE
3 18 6.79%107° 401107
4 24 7.67*10°° 5.11*107*
5 30 7.43*10°° 4.05%107*
10 60 8.41*107° 4.74*10™
20 120 8.30*10°° 8.08*10™
50 300 8.59*10°° 1.11*10°
100 600 9.00%1073 9.11*107*

Table 1: Here for different values of N (size of the grid in of the stochastic
environment) Mean Absolute Errors for first and second degree approximations are
compared with one another. As can be seen, second degree approximation significantly

outperforms the first degree approximation across different scales of N.

Conclusion

In conclusion, the thesis "Moment Closure Approximation and its Applications in Machine
Learning and Evolution" brings forward a unifying framework to address complexity in
systems across biology and artificial intelligence. The moment closure approximation, as
developed and applied in this work, proved to be a powerful tool for deriving analytical
insights into stochastic processes that were previously tractable only via computer simulation
or not at all. By achieving the aims — from evolutionary genetics models to game-theoretic
dynamics and neural learning rules — the research demonstrated that a single mathematical
approach can illuminate diverse phenomena.

One of the common threads linking the findings is that finite-size and randomness matter
greatly in real systems, and that we can account for them in a systematic way. In
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evolutionary theory, the work shows how finite populations deviate from ideal infinite ones,
quantifying those deviations and enriching evolutionary predictions. In evolutionary game
theory, it highlights how chance can tip the balance of strategy competitions, providing tools
to calculate those odds. In machine learning, it reveals how the parameters of a learning
process influence stability, offering a way to balance learning speed and reliability. Together,
these results not only solve specific problems in their respective fields but also collectively
expand our methodological toolkit for scientific inquiry. Crucially, the thesis underscores an
important insight: mathematical techniques developed in one domain (like moment closure in
chemical models) can be adapted to seemingly unrelated domains (like population genetics,
game theory and neural networks) to great effect. Such cross-pollination of ideas is
increasingly important in modern science, where complex systems research, data science,
biology, and Al often intersect. The findings of this work encourage a more integrated view
of complex system analysis. By bridging theoretical gaps between fields, the thesis opens the
way for future research to build on its moment closure methods — whether that means
exploring new evolutionary scenarios (e.g. co-evolution, epidemiological models), new
game-theoretic models (networked games, fluctuating environments), or new machine
learning algorithms (reinforcement learning dynamics, adaptive systems).

In summary, this work is significant both for the specific results it delivers and for the
broader perspective it provides. It demonstrates that moment closure approximation can be a
cornerstone technique for analyzing and understanding the behavior of stochastic systems
without needing infinite models or exhaustive simulations. The practical implications range
from more accurate evolutionary computations to more stable learning algorithms. By tying
together the fields of evolution and machine learning through a common analytical approach,
the thesis contributes to a vision of science where universal principles and tools help unravel
the complexity of the natural and artificial worlds.
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3akiouenue
Bapnausu Darap ApaeBud

[pubauxenue 3aMbIKAHUS MOMEHTOB U €r0 NPUJIOKEHUS B MALIMHHOM 00y4eHUH U
IBOJTIOIHH

B nmucceprauuu mpencraBieH €AWHBIM IOIXOJA, OCHOBAaHHBIM Ha METOJC 3aMBIKaHUS
MOMEHTOB, TO3BOJISIIOIIUI MPOBOIUTH AHATUTUYECKUN aHAIU3 CIOXKHBIX CTOXAaCTHUYECKUX
CHUCTEM B O0JIACTAX 3BOJIOLMOHHON OHOJOTMM M HCKYCCTBEHHOI'O HMHTEIUICKTa. MeTox
pelaer 3ajady MONMyYeHHs aHATUTHYCCKUX PEUICHUI U MPOIECCOB, paHee TPeOOBAaBIIMX
MIPEIONIOKEHAN 0 OECKOHEYHO OONBIINX TMOMYJSAIHUAX WIH MACIITAOHBIX KOMITBIOTEPHBIX
cumyIsiuid. [IpumeHsis 3aMbIKaHHE MOMEHTOB B Pa3JIMYHBIX 00JACTIX — TAKMX KakK T'eHETHKA
KOHCYHBIX MOMYJISIN, SBOIIOIMOHHEIC UTPHI, Xe000BCKOE 00YUCHUE B HEHPOHHBIX CETSIX U
CTOXaCTHYECKas HABWTAIMS arcHTOB — padoTa CBSA3BIBACT TEOPETUYECKUE MOJEIU C
peaybHOM M3MEHUYMBOCTHIO. JlMccepTanust oKa3bIBaeT, YTO €UHAsE MaTeMaTh4yecKkas cxema
MOXET YYUTHIBaTh 3(G(GEKThl KOHEYHOTO pasMepa CHCTEMbI M ClydalHble (IIyKTyalluu,
oOecreunBas yIydlIeHHBIC TPOTHO3BI 3BOJIIOIMOHHON JTMHAMUKH U KPUTCPUH YCTOWYUBOCTH
JUISL AITOPUTMOB OOYUCHHS.

I'naBHoii 3agadveii paboTel ObUIO pa3paboTaTh W NPUMEHHUTH YHHBEPCAIBHYIO METOAUKY
3aMBIKaHUsI MOMEHTOB Ul aHAJIU3a CTOXAaCTUYECKUX TUHAMHUUYECKHX cucreM. KoHkpeTHble
LEH BKIIIOYaITH:

e (CozgaHne yHUBEPCAIBHOTO ITOJXOJA 3aMBIKAHUSI MOMEHTOB JUIS SBOJIOIHOHHBIX
MoO/IeJIel KOHEUHBIX TOMYJISIUI.

e BrBegeHHE W UYHCICHHOE MOATBEPXKICHHE TIONPABOK K  KIACCHYECKUM
JNETePMUHHUCTCKUM ~ MOJENSM,  CBS3BIBAIOIIMM  JAWHAMHKY  KOHEYHBIX |
OECKOHEYHBIX MOMYJISIHIL.

e  PacmpocTpaHeHHE METOAA Ha 3BOJIONMOHHYIO TEOPHIO UTP C YIETOM BIHSHHS
CITy4aifHOCTH B KOHEYHBIX IOIYJISIINSX.

e [IpuMeHeHHe MOAXOMAA K 3aJadaM MAIIMHHOTO 00yueHHs (XebO0oBckoe oOyueHme)
JUIsL aHaJIW3a CBS3M IApaMeTPOB OOYUYECHWsI C JOJITOCPOYHOHW YCTOWYMBOCTBIO H
CXOJUMOCTBIO MOJIeNeil.

e JleMOHCTpal¥s MEXIUCHHUIUIMHAPHOTO MOTEHIMAla METoJa Ha NpHUMepax 3ajaad
9BOJIIOLIMY U UCKYCCTBEHHOTO MHTEIUIEKTA.

I[I/ICCCpTaHHSI TNOJIY4aceT pE3yJabTAaThl B PA3JIMYHBIX 00I1acTaX:

e [lonmyasiuMOoHHAsi TeHeTHKa: MeTox 3aMBIKAaHMS MOMEHTOB TIPHMEHEH K
TeHETHYEeCKUM MOJENIAIM KOHEUHBIX MOMyJsaiuid (Hampumep, Mmonenu Paiita—
Oumepa u KoHeuHONomynsIHOHHOW Moxenn Kpoy—Kumypsr). [lomydenst
aHATNTHIECKHEe (OPMYIIBI ISl JUHAMUKH aJJIeNbHBIX 9acTOT (CpefHee 3HaUeHHE
JIMCTIEPCHs), KOTOphIE KOJIMYECTBEHHO OIMCHIBAIOT OTKJIOHEHHS pPEalbHBIX
(KOHEYHBIX) MOMYISIIHI OT  KJIACCHYECKMX  OECKOHEYHONOIYJISIIUOHHBIX
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IIPOTHO30B. OTU (HOPMYIIBEI TO3BOJISIIOT TOYHEE OIIEHUBATh BEPOSATHOCTh (DHKCAUH
MyTaIii U CPEIHIOI0 NPUCIIOCOOJICHHOCTE. YNCIIEHHbBIE CUMYIISIIUN MTOATBEPANIN
BBICOKYIO TOYHOCTB STHX aHAUTUTHYECKUX PE3YIIbTATOB.

e Mopean kBa3uBHAOB: [lomydeHbl aHAIUTHYECKHE PpEIICHUS M1 MOJENeH
KBa3UBUIOB, BKJIIOYAIONIUX CIIOXKHBIE JJIEMEHTHI, TaKHe KaK TI'€HBI-MYyTaTOpbl U
PEKOMOMHALMSA B YCIOBHAX HM3MEHSIOIMXCS JIAHAIMA(TOB HPHCIIOCOOICHHOCTH.
BrisiBieHa HOBast «MyTaToOpHast (azay, MPU KOTOPOH B TMOMYIALUM CTaOHIBHO
COXpAHSIETCsl ajlellb C IOBBILEHHOH CKOPOCTBIO MyTallUi, CYIIECTBEHHO
H3MEHSIONIAs 3BOTIOLHOHHBIE CLIEHAPUHL.

e  DBOJIONMOHHAS TeopHsi Urp: BriepBble MpUMEeHEH NOAXO0/ 3aMBIKaHHUSI MOMEHTOB
K CTOXaCTHYECKOH JUHAMUKE 3BOJIOIMOHHBIX MIP B KOHEUHBIX MOMYIANUAX (Ha
npuMmepe nporiecca Mopana). BriBeneHa CKOpPpEKTHpOBaHHAs PpEIIMKATOpHAS
JMHAMUKa, YIUTHIBAIOIIas CIIydaiHble 3 (EeKTH KOHEYHOTO pa3Mepa IOIYJISIIH 1
CXOJSIIIAsACS K KJIACCHYECKON PeINIMKaTOPHOH TUHAMHKE B Tpejesie OeCKOHEUHOH
MOMYJIIMA. AHAJIATHYECKHE pPe3yibTaThl (TPaeKTOPHHM YacTOT CTpaTeTHid u
BEPOATHOCTH HX (UKcanuu) OBUIM TINATENBHO IPOBEPEHBI M IOATBEP)KIACHBI
YHUCJICHHBIMH 3KCIEPUMEHTAMH, 4YTO IIPEJOCTABISIET HOBBIH aHATMTHYECKUIT
HHCTPYMEHT IJISI U3y4EHHUS SBOTIONUOHHBIX UIP.

e  Xe00oBckoe o0yueHue: Mero 3aMblKaHHs MOMEHTOB NIPUMEHEH K IpaBuity Olis
(crabunm3upoBaHHOMY  BapHaHTy  XeOOoBckoro  oOyueHus).  BriBenena
aHAINTHYECKas 3aBUCHMOCTh MEXAY CKOPOCTBbIO OOydeHHsS M CTallHOHApHON
JHCTIepCHell CHHANTHYeCKHX BecoB HeipoceTH. [lokazano, uro Ooyee BBICOKHE
CKOpOCTH OOydYeHHs NPUBOIAT K OoJbmieMy pa3dpocy BECOB, YTO OTpaKaeT
KOMIIPOMHCC MEXAy CKOPOCTbIO OOYydYeHHs] U CTaOMIBHOCTBIO. Pe3ympTaTsl
MOATBEP)KACHB! YHCICHHBIMH CHMYJBILMSMH W TIPEAJaraloT TeOPEeTHYECKYIo
OCHOBY JUISl QJaNTHUBHOW HACTPOWKM CKOpOCTH 0O0y4deHHS B XeOOOBCKHX
HelpoceTsx.

e CroxacTuyeckasi HaBHUTallMsAg areHToB: PacmmpeHne Meroga Ha 3amady
CTOXaCTHYECKONH HABHTAllMd areHTa («BETPEHBI CETOYHBIH MHP») MO3BOJMIO
BBIBECTH aHAJMTHYECKHE YPAaBHEHUs Uil CpeAHEed TPaeKTOpUM W IUCHEepPCUH
MOJIOKEHUSI areHTa B YCJOBUSX CIy4YaiHBIX BO3MylIeHHiH (BeTpa). Briouenue
MOMEHTOB BTOPOTO TIOpsiAKa (IUCHEPCHH) CYMIECTBEHHO YIyUIIMJIO TOYHOCTH
MIPOTHO30B 10 CPAaBHEHHIO C MOAXOAOM, YUYHUTHIBAIONIMM TOJIBKO CpEIHHE
3HAUCHUSL.

Taxum o6pa3om, AuccepTanist JEMOHCTPUPYET, YTO TTOIXO0]] 3aAMBIKAHUSI MOMEHTOB SIBISIETCS
WHCTPYMEHTOM JUISl aHAJIUTHIECKOTO aHAIN3a CTOXACTUYECKHX CHCTEM, 00eCHedHBAIONINM
TOYHBIE IIPOTHO3BI U TITyOOKOE TOHUMAaHKE ITPOIIECCOB, PaHee JOCTYIHBIX JIUIIb C TOMOIIBIO
YHCIICHHBIX METOOB. Pe3ymbTaTsl paboThI CIIOCOOCTBYIOT AaNbHEHIIEMYy Pa3BUTHIO METOJIOB
MOJENUPOBAHMS CIIOXKHBIX AJaNTHBHBIX CHCTEM U WMEIOT IIHPOKOE MPaKTHIECKOe
NPUMEHEHHE KaK B OMOJIOTHH, TaK U B 337]a4aX UCKYCCTBEHHOI'O MHTEIUIEKTA.
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