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General Description of the Work

Relevance of the Research

The rapid adoption of solar photovoltaic (PV) technology as a key enabler of global renewable
energy strategies has created a pressing need for reliable, large-scale fault detection. Micro-cracks,
interconnect corrosion, delamination, and thermal hotspots in PV modules reduce energy output and
long-term system performance. Thermal imaging offers a non-contact means of identifying these
issues through the detection of infrared radiation, but its use presents several challenges. These in-
clude low contrast, high noise levels, and limited spatial resolution, especially in imagery captured by
embedded devices and unmanned aerial vehicles (UAVs). Conventional image processing tools devel-
oped for the visible spectrum are typically ill-suited for thermal data, resulting in poor generalization
and limited diagnostic accuracy. Manual inspection remains labor-intensive and impractical for large
PV arrays. These challenges underscore the need for efficient, thermal-specific image analysis tools
that are scalable, robust, and compatible with real-time deployment in operational environments.

The absence of objective and perceptually consistent criteria for evaluating grayscale conversions
complicates the use of thermal data in automated pipelines. Without reliable quality assessment tools,
preprocessing decisions are often based on heuristics, undermining downstream analysis. Further-
more, thermal images often suffer from inconsistent visibility and uneven contrast due to environmen-
tal factors, making adaptive enhancement a non-trivial requirement for meaningful interpretation.

In addition to image quality issues, the scarcity and imbalance of labeled thermal datasets re-
strict the performance of learning-based methods, especially in edge-case fault scenarios. Standard
augmentation strategies fail to reflect the statistical and perceptual characteristics of thermal data, lim-
iting their ability to support robust model training. Finally, many existing deep learning models are
over-parameterized for embedded applications, where memory and computation budgets are tightly
constrained, yet high classification accuracy remains critical for operational viability.

Aim of the Work and Key Objectives
The aim of the work is to develop an end-to-end image processing framework that improves
the accuracy and reliability of thermal defect detection, particularly in PV systems, while remaining
suitable for deployment on low-power and embedded platforms.
To achieve this goal, the research is structured around the following objectives:
1. Define perceptually meaningful metrics for evaluating the quality of grayscale image conver-
sion, enabling objective assessment without reliance on ground-truth references.
2. Develop techniques for thermal contrast enhancement that improve visibility of structural de-
tails and accommodate image-specific variations in quality.
3. Improve training data quality through augmentation strategies that generate representative,
high-contrast samples, with special emphasis on underrepresented fault types.
4. Design lightweight neural network architectures optimized for the classification of low-
resolution thermal images acquired in real-world conditions.
5. Integrate and validate all components of the framework on diverse thermal datasets represen-
tative of solar, industrial, and aerial inspection domains.

Research Objects / Subject of the Research
The object of this research is thermal and color image data used in imaging-based monitoring



systems across renewable energy and industrial domains. This includes visual and thermal imagery
captured from photovoltaic modules, wind turbine blades, and electrical equipment such as transform-
ers and motors, typically obtained via UAV platforms or embedded sensing devices.

The subject of the research is the study and development of image processing methods aimed at
improving the quality and interpretability of thermal and color image data for downstream tasks such
as enhancement, analysis, and classification. Emphasis is placed on the creation of efficient, scalable,
and interpretable processing pipelines that are compatible with resource-constrained environments
and capable of handling image imperfections common in real-world deployments.

Research Methods

The methodological approach integrates theoretical analysis, algorithmic modeling, and empirical
validation. Itinvolves the study of image quality assessment, enhancement strategies, and classification
techniques tailored to thermal imaging conditions. The research utilizes both analytical and data-
driven methods to evaluate visual quality, optimize image preprocessing, and design compact machine
learning models suitable for edge deployment.

Experimental studies are conducted using image datasets from various thermal imaging scenarios,
and the proposed methods are validated using standard performance metrics such as classification
accuracy, precision, recall, specificity, and computational efficiency. The methods are assessed for
their ability to generalize across diverse operational settings and contribute to robust image-based
diagnostics.

Scientific Novelty of the Work

The scientific contributions of this dissertation include:

¢ The introduction of two novel no-reference quality metrics, TIA and WTIA, for perceptual
evaluation of grayscale conversion without access to reference images.

¢ The proposal of BIE, a thermal-specific entropy metric that integrates global and local image
properties to improve visibility and guide enhancement.

¢ The development of SlantNet, a lightweight convolutional neural network incorporating har-
monic slant convolutions for efficient classification on embedded devices.

¢ The formulation of image enhancement and decolorization as optimization problems, enabling
automated parameter selection using perceptual metrics and metaheuristic algorithms.

Practical Significance of the Work
This research enables the creation of scalable and energy-efficient solutions for thermal image
analysis in real-world environments. Its practical significance is reflected in the following outcomes:

* Real-time PV fault detection using lightweight, interpretable models compatible with UAVs
and edge devices.

* Quality-driven image preprocessing using robust no-reference metrics such as TIA, WTIA, and
BIE, improving contrast and structure visibility under noise and resolution constraints.

« Efficient augmentation pipelines that selectively generate high-quality synthetic training sam-
ples, reducing annotation needs and improving classifier generalization.

* Anintegrated image processing pipeline evaluated across Infrared Solar Modules and Thermal
Objects datasets, demonstrating robust performance in both enhancement and classification
tasks.



* Public release of the augmented PV dataset', supporting reproducibility and adoption in aca-
demic and industrial settings.

Potential Applications
Although focused on PV systems, the proposed framework is applicable to a broad range of
thermal vision tasks, including:

 Pedestrian and vehicle surveillance, where improved thermal contrast aids night-time and low-
light detection.

¢ Industrial equipment monitoring, including motors and transformers, where early thermal
anomaly detection supports predictive maintenance.

¢ Medical thermography, where contrast-sensitive preprocessing improves abnormality detection
in diagnostic screening.

* Wind turbine blade inspection using UAV-mounted sensors, enabling early fault detection with
minimal human intervention.

Publications

The results of the dissertation have been published in 4 scientific articles, 3 of which are indexed
in international databases such as Web of Science and Scopus. The full list of publications is provided
at the end of the abstract.

Scope and Structure of the Dissertation
The dissertation comprises 126 pages and includes an introduction, four main chapters, a conclu-
sion, and a reference section with 134 bibliographic entries.

Content of the Dissertation
Introduction is the first chapter of the dissertation and presents the motivation, research context,
problem formulation, and overall structure of the work.

In Chapter 2, the proposed threshold-independent quality assessment framework for image de-
colorization is presented. The chapter introduces novel evaluation metrics designed to address the
limitations of existing methods, particularly their reliance on user-defined thresholds and lack of align-
ment with human perception.

Section 2.1 introduces the problem of image decolorization, highlighting the importance of pre-
serving color contrast and structural content during grayscale conversion. It motivates the need for
robust no-reference quality metrics, especially in applications where no ground-truth grayscale ref-
erence is available. The challenge lies in designing evaluation methods that account for perceptual
contrast loss and structural degradation, without depending on subjective human feedback.

Section 2.2 provides an in-depth review of related work. Traditional grayscale conversion tech-
niques apply fixed linear combinations of RGB values, such as:

9= aR+bG + B, M

where a, b, and c are fixed weights, e.g., in the Luminosity method g = 0.21R + 0.72G + 0.07B.
While computationally efficient, these approaches often fail to preserve chromatic contrast and per-

1ht',t:ps ://github.com/HrachA/augmented-infrared-solar-modules-set/tree/main



Source Lightness Average Luminosity Y channel Desired quality

Figure 1: Comparison of linear grayscale conversion methods. Decolorized images can lose the
contrast and become hardly visible.

ceptual salience (see Fig. 1).

More sophisticated methods include chrominance-aware techniques and energy minimization ap-
proaches, which attempt to retain color edges or adapt the grayscale output based on visual models.
Neural network-based methods also emerged, using saliency cues and deep representations to improve
decolorization.

As for evaluation, existing no-reference metrics include the Color Contrast Preserving Ratio
(CCPR) and Color Content Fidelity Ratio (CCFR). Combined, they form the E-score metric. These
metrics depend heavily on a user-defined threshold 7, leading to inconsistent evaluations across differ-
ent methods and datasets. Additionally, they fail to account for spatial saliency and do not generalize
well across varying image content (Table 1).

Section 2.3 presents the proposed quality metrics: Threshold-Independent Area (TIA) and its
weighted variant (WTIA). TIA addresses the instability of 7-dependent metrics by analyzing the E-
score curve across multiple thresholds (7 = 2, ..., 10) and computing the area under a fitted regres-

TIA:max(Qa;_ﬁ,O>, )

where o and 3 are the slope and intercept of the line y = o + S approximating the E-score curve.

sion line:

To better align with perceptual importance, WTIA incorporates visual attention using weighted

E-score components:
2 - WCCPR - WCCFR

E- w = , 3
S€OTew = WCCPR + WCCFR ©)
where weights w,,, w, are derived from saliency maps:
T T >

S wawy|(z,y) € Q ’
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where d,,, is the CIE LAB color difference, g, is the value of the x pixel after decolorization, €2 is
the set of pixel pairs with 0, > 7, O is the set of pixel pairs with |g, — g,| > 7. This modification

ensures that regions more important to human perception are emphasized, enhancing metric reliabil-
ity. When all pixel weights are set to 1, the method behaves identically to the traditional unweighted
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Figure 2: Workflow for proposed quality metrics: An overview of the sequential steps and stages
involved in calculating the TIA and WTIA quality metrics

formulation, ensuring consistency and backward compatibility. By assigning continuous pixel-wise
weights ranging from 0 to 1, the metric supports more nuanced assessments where perceptually sig-
nificant details carry greater influence. The full pipeline is illustrated in Fig. 2.

This section also describes simulation studies validating the effectiveness of TIA and WTIA. Using
Cadik and COLOR250 datasets, correlation with human ratings was assessed using the Kendall rank

coefficient R: ) ) )
__ #{concordant pair} — #{disconcordant pair}

in(n—1)

R ; (6)
TIA and WTIA showed significantly higher R values than E-score and its components, validating their
perceptual alignment. As we can see in Table 1, the proposed metrics achieve the highest correlation
with both accuracy and preference scores, confirming their superiority in reflecting human judgment.
Furthermore, a genetic algorithm was applied to solve:

max F'(a, b, c), (7

a,b,c
where F' is TIA or WTIA, and a, b, c are grayscale weights. This optimization yielded content-
adaptive grayscale conversions that outperformed traditional fixed-weight approaches. The genetic
algorithm is a population-based optimization method inspired by the process of natural selection.
It begins with a randomly initialized population of candidate grayscale weight triplets (a, b, ¢) and
iteratively evolves them to maximize the TIA or WTIA score. Each candidate’s fitness is evaluated
by converting the image using its weights and measuring the resulting quality. The algorithm applies
crossover and mutation to generate new candidates and selects the most promising ones for the next
generation. The best-performing parameters are returned after a fixed number of iterations. The full
procedure is described in Algorithm 1.

Section 2.4 presents the quantitative and visual evaluation of the proposed WTIA-based decol-
orization approach, benchmarking it against both classical and state-of -the-art methods using two stan-
dard datasets. The analysis highlights the limitations of traditional grayscale conversions when faced
with perceptually challenging images, while demonstrating the robustness of the proposed metric-
guided optimization. Figure 3 provides a visual comparison, showcasing how our method consistently
preserves perceptual contrast better than other techniques.

Section 2.5 concludes the chapter by summarizing the key contributions. TIA and WTIA pro-



Table 1: Average Kendall correlation rank between metrics and user scores on Cadik’s dataset (C)
and the subset of it (C)

Metric Accuracy Preference
C C C C

CCPR,—; 0.2341 0.2971 0.2222 0.2698
CCPR,—s 0.2341 0.2925 0.2222 0.2562
CCPR,—¢ 0.2222 0.2834 0.2183 0.2472
CCFR,—4 0.2430 0.2210 0.2953 0.2763
CCFR,=5 0.1950 0.2025 0.2626 0.2479
CCFR,—¢ 0.2586 0.2616 03180 0.2977
E-score,—3 0.4167 0.4376 0.4603 0.4558
E-score;—s 0.4405 0.4603 0.4762 0.4785
E-score,—5 0.4365 0.4512 04563 0.4603
E-score,—g 0.4206 0.4376 0.4484 0.4467
E-score,—7 0.4206 0.4376 0.4563 0.4558
TIS 0.1905 0.2517 0.2024 0.2245
TIA 0.4563 0.4785 0.4841 0.4875
WTIA 0.4802 0.5011 0.4921 0.5011

Algorithm 1 Optimal decolorization using Genetic Algorithm

Inputs: I, = source image, I,, = weights image
Initialization: population = n, maximum number of iterations = N, ¢ = 0
Function objective(a, b, ¢)
1, = ConvertToGray(a, b, ¢)
WTIA = CalculateWTIA(I, I 4, I.)
return WTIA
EndFunction
Generate the initial number of n chromosomes
Compute the fitness of each chromosome using the objective function
while t < N do
Select a pair of chromosomes based on fitness
Apply crossover on selected pair
Apply mutation operation
Replace old population with newly generated one
t—t+1
end while
Return parameters with the best fitness
Output: a, b, c parameters

vide robust, threshold-free, and perceptually aligned evaluation tools for grayscale conversion. Their
integration into optimization frameworks enables high-quality, adaptive decolorization across diverse
applications, overcoming limitations of prior methods and advancing the field of image quality assess-
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Figure 3: Results of different parametric decolorization methods. Our method preserves the small
details and contrast.

ment.

In Chapter 3, the focus shifts to thermal imaging, where a novel entropy-based no-reference
Image Quality Assessment (IQA) metric is proposed, aimed at addressing the limitations of existing
enhancement and uncertainty quantification methods in infrared images. This chapter introduces
Block-wise Image Entropy (BIE), a hybrid metric that combines local structural analysis with global
contrast cues to evaluate and optimize the quality of thermal images under challenging conditions.

Section 3.1 introduces the role of thermal imaging across fields such as medicine, building diag-
nostics, and industrial maintenance, emphasizing the difficulty of processing noisy and low-contrast
infrared images. It discusses how uncertainties, stemming from sensor noise, environmental influ-
ences, and the complex physics of heat transfer, lead to image artifacts and analysis errors. Despite
the broad application of thermal imaging, traditional tools for uncertainty quantification remain un-
derdeveloped. Quality metrics, particularly entropy-based approaches, are central to image evaluation
and enhancement. However, conventional formulations fall short in thermal contexts. These limita-
tions motivate the need for a new formulation that can more reliably assess the informational content
of thermal images.

Section 3.2 reviews existing entropy-based and block-wise metrics. Shannon entropy,

N

E(I) = - P(i)log, P(i), ®)

=1

measures the global uncertainty of pixel intensity distribution of the I image, where P(7) is the
probability of the ¢-th intensity level, and V is the number of possible intensity levels. Rényi entropy,

1 N
Ra(I) = —_log, (Z P(i)“) : ©)

generalizes this with a parameter « that adjusts sensitivity to pixel probability concentrations. Yet
both fail to capture spatial structure and are prone to noise. Block-based metrics like EME and AME



offer localized evaluations:

1w Ik
EME(I)=— 201 max 10
(=23 (20m =), (10)
k=1 min
1 a N k k Imax_lmin
AME(I) = — MI™)" In M (I MI") = ——F—— 11
(1) ”ga ()™ I M(I%),  M(IY) = 2t (11)

where n is the number of blocks, I, and I¥, are maximum and minimum intensities in block k,
« = 1 is a parameter, and c is a small constant to prevent division by zero. These metrics are often
misled by noise, overstating quality in degraded images.

Section 3.3 introduces the Block-wise Image Entropy (BIE) metric, which integrates global con-
trast, block-wise entropy, and structural consistency. It is defined as:

& e (M (1) In M(I%)) SD(I)

BIE(I) = ADP(I) x X ,
@ @ LIS B TF Iy, SD(Iy)

(12)

where M’ (I*) is the normalized modulation of block I*, E(I}) is its Shannon entropy, and S.D([)
is standard deviation. The term AD P(I) captures average deviation percentage:

_ 1A - L/2]

M, I - .

ADP(I)=1 —71 (13)
where A(I) is the image mean and L the dynamic range (typically 255). BIE penalizes uniform and
noisy images while rewarding balanced contrast with perceptually meaningful variation.

Table 2 presents a thermal image alongside two distorted versions with identical histograms, along
with their corresponding entropy-based metric values. While global metrics such as E, R», and SD
remain unchanged across all versions, the block-based BIE metric successfully detects the structural
distortions. In contrast, EME and AME tend to increase in noisy cases, indicating their higher sensi-
tivity to noise and reduced robustness in distinguishing perceptual quality.

Section 3.4 evaluates the BIE metric across several thermal datasets. Computer simulation results
show that BIE yields consistent rankings for enhancement methods and correlates better with visual
quality than AME or Shannon entropy. The section also introduces optimization frameworks using

Genetic Algorithms (GA) and the Bat Algorithm (BA), with BIE as the objective function:

max BIE(F(Is,pi,...,pn)), (14)
P1,P25---sPn

where F' denotes the image enhancement function applied to the source image I, and p1, ..., pn
are the tunable parameters of the enhancement method. The goal is to find the parameter set that
maximizes the Block-wise Image Entropy (BIE), yielding optimal visual quality. For example, Fig-
ure 4 shows the optimization of the Contrast Limited Adaptive Histogram Equalization (CLAHE)
algorithm, which enhances image contrast by applying localized histogram equalization while limit-
ing noise amplification. The parameters tuned include clip limit (CL) in the range [1, 60] and grid
size (GS) in [4, 40]. In the first case, both default settings and Shannon entropy—based optimization
result in over-enhanced, noisy images. In contrast, BIE selects optimal parameters (CL = 6, GS = 4),

10



Histogram Source Image Shuffled Rows Shuffled Pixels

E 7.202 7.202 7.202
R, 4.868 4.868 4.868
SD 39.89 39.89 39.89

EME* 9.892 18.12 28.63

AME" 0.289 0.345 0.315

BIE* 0.114 0.045 0.027

Table 2: Visual and quantitative comparison of a thermal image and its distorted versions. The his-
togram (leftmost column) is identical across all images, but entropy-based quality metrics distinguish
the visual integrity. All block-based measures are calculated using block_size = 15.

producing visually superior results.
Finally, the chapter introduces a BIE-weighted image fusion model, which serves as an effective
application of the thermal image quality measure:

SN ml;
= =, (15)
D iy M
where I; are enhanced images and m; their BIE scores. Figure 5 illustrates the results of this fusion
process, showing the BIE scores for each input and the resulting fused image.

Section 3.5 concludes the chapter by summarizing the key findings: the BIE metric addresses
limitations in traditional entropy and block-wise measures, offering a perceptually consistent and
noise-robust quality criterion for thermal images. Its integration into parameter tuning and image
fusion pipelines demonstrates utility across multiple image enhancement frameworks and datasets.
BIE is shown to facilitate reliable thermal image assessment and optimization, advancing uncertainty
quantification and visual clarity in critical infrared imaging tasks.

In Chapter 4, a novel thermal-specific augmentation strategy is introduced to address data
scarcity challenges in fault classification tasks, particularly for photovoltaic (PV) modules. The chapter
begins by discussing the limitations of conventional augmentation techniques when applied to ther-
mal data, highlighting how unique infrared characteristics demand tailored strategies. It then presents
the use of BIE, a no-reference thermal image quality metric, as the foundation for a metric-driven
augmentation pipeline.

Section 4.1 provides background on thermal image classification and outlines the motivation for
quality metric-based augmentation. It details the shortcomings of traditional augmentation methods,
such as flips, brightness adjustments, and histogram equalization, when applied to thermal imagery,
and reviews recent works that incorporate deep networks or GANSs for thermal data expansion.

Section 4.2 introduces the proposed method in detail. It begins by defining the BIE metric, which
incorporates both global and local image characteristics, making it well-suited for evaluating thermal

11
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Figure 4: Results of the optimization of CLAHE algorithm (clip limit (CL) and grid size (GS) pa-
rameters) using E and BIE metrics.

image quality without the need for a reference image. This section explains how each thermal image
is enhanced using parametric contrast stretching, with stretching limits optimized to maximize the
BIE score. For each original image, the enhancement parameters that yield the top two BIE values
are used to create two new augmented samples. These enhanced images, along with the original,
are then used to expand the dataset. The process ensures that augmented samples are not arbitrary
but are perceptually and structurally meaningful according to the thermal quality metric. Figure 6
illustrates this process by showing examples of an original image, its best BIE-enhanced version, and
the second-best result. The section highlights how this augmentation technique generates thermally
diverse, high-quality training data that improves downstream model performance while preserving
essential fault-related features in PV modules.

12
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Figure 5: Metric-based fusion of image enhancement algorithms. The BIE metric values of each
image are shown below the corresponding image. The enhancement methods include HS (Histogram
Stretching), HE (Histogram Equalization), and IAGCWD (Improved Adaptive Gamma Correction
with Weighted Distribution).

Section 4.3 presents the experimental setup, including datasets, training configurations, and the
neural network architectures employed for evaluation, ranging from AlexNet to Swin Transformer. It
compares performance metrics across several augmentation schemes, such as geometric, brightness-
based, and BIE-based strategies, reporting improvements in accuracy, precision, recall, and speci-
ficity. The section notes particularly strong gains on lightweight networks like MobileNetV3, where
contrast-aware augmentation significantly boosts generalization.

Section 4.4 concludes the chapter by reaffirming the practicality and effectiveness of the pro-
posed technique. It outlines future directions, including the development of thermal-specific deep
architectures and the refinement of augmentation policies for broader thermal imaging applications.

In Chapter 5, a lightweight neural network architecture called SlantNet is proposed for efficient
and accurate classification of faults in thermal images of photovoltaic (PV) systems. The chapter
introduces the need for computationally efficient models in large-scale solar installations and presents
SlantNet as a solution combining Slant Convolutional layers with thermal-specific data augmentation
to enable real-time inference and robust fault identification.

Section 5.1 introduces the motivation and challenges associated with PV system fault detection
using thermal imagery. It highlights the limitations of manual inspection and traditional electrical
testing, emphasizing the need for automated, scalable approaches. The section also outlines the op-
portunity to enhance classification models with directional and spectral feature sensitivity.

Section 5.2 provides technical background on image transforms, particularly the Slant Trans-
form (SLT), and its relevance to thermal imaging. It explains how SLT is well-suited for encoding

13
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Figure 6: Example of BIE-based contrast enhancement on thermal images of defective PV modules.
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linear brightness gradients and piecewise structures, making it ideal for capturing fault-relevant pat-
terns in low-resolution thermal data. The section reviews related work on harmonic convolutions and
lightweight CNN models.

Section 5.3 presents the proposed method in depth. It introduces Slant Convolution (SC) as a
replacement for traditional learnable filters. These SC layers use fixed SLT basis functions, enhanced
by trainable weights (cv, ) that modulate the frequency response using a logarithmic transformation.
The section describes how the SC layer improves interpretability and efficiency by leveraging struc-
tured directional features. The architecture of SlantNet is then detailed, comprising two SC blocks
followed by max-pooling, fully connected layers, and dropout regularization. Input images are pro-
cessed at a resolution of 40 x 40, making the network suitable for mobile and embedded devices.
Furthermore, the augmentation pipeline includes geometric flips, contrast enhancement based on the
BIE metric, and optimal decolorization guided by the TIA metric, targeting class imbalance and ther-
mal feature preservation. This combination yields a highly optimized training set with improved visual
discriminability of rare fault types.

Figure 7 compares standard and Slant Convolution pipelines. While standard convolution learns
spatial filters directly from data, Slant Convolution first projects the input onto a fixed harmonic ba-
sis and then modulates it using trainable logarithmic parameters. This structured process enhances
the extraction of directional and frequency-dependent features. Figure 8 illustrates the overall struc-
ture of the network, comprising two convolutional blocks, max-pooling layers, and a fully connected
classifier.

14
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Figure 7: Comparison of Standard Convolution and Slant Convolution. Standard convolution learns
arbitrary filters directly from data, while Slant Convolution first decomposes the input using a fixed
harmonic basis and then applies trainable logarithmic enhancement to generate effective filters that
better capture directional intensity variations.
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Figure 8: Overall architecture of the proposed SlantNet model incorporating the Slant Convolution
(SC) layers.

Section 5.4 reports experimental results and comparisons. The section benchmarks SlantNet
against AlexNet, ResNet50, MobileNetV3, EfficientNet, ShuffleNetV2, and Swin Transformer on bi-
nary and 12-class PV fault classification tasks. Evaluation metrics include accuracy (Acc), precision
(Pr), recall (Rec), and specificity (Sp). SlantNet achieves the highest binary classification accuracy
(95.1%) and competitive multiclass accuracy (82.75%), outperforming all evaluated models in clas-
sification performance. Full metric results are presented in Tables 3 and 4. In terms of efficiency,
SlantNet demonstrates exceptional performance across all metrics. As shown in Table 5, it achieves
the lowest FLOPs (3.55 MMac), a compact model size (12.82 MB), and a competitive parameter
count (3.36 million), while significantly outperforming all other models in terms of throughput, ap-
proximately 55,000 images per second. This makes SlantNet highly suitable for real-time deployment
on resource-constrained platforms such as UAVs, embedded systems, and edge devices.

Section 5.5 concludes the chapter by summarizing the contributions of SlantNet in advancing
thermal image classification. It reiterates the benefits of integrating spectral transforms with deep
learning and highlights the success of metric-based augmentation. Future directions include deploy-
ment in drone or IoT systems using TinyML, adaptation to other domains such as wind turbines and
medical imaging, and exploration of other fast orthogonal transforms for further efficiency gains.

15



Table 3: Classification Performance on the Validation and Test Sets for binary classification

Model Test Validation

Acc Pr Rec Sp Acc Pr Rec Sp
AlexNet 9245 9321 91.63 9327 | 9280 9431 91.11 9449
ResNet50 92.65 9298 9233 9297 | 9205 92.18 9191 92.19

SqueezeNet 89.60 9225 86.55 92.67 | 88.75 92.08 84.82 92.69
ShuffleNetV2 | 9295 93.02 9293 9297 | 9220 93.07 9121 93.19
MobileNetV3 | 9330 93.07 93.63 9297 | 9295 9326 92.61 93.29
EfficientNet 93.50 94.87 92.03 9498 | 9405 9537 92.61 9550

ViT 88.05 89.80 8596 90.16 | 88.40 90.69 85.61 91.19
Swin 9135 9227 9034 9237 | 91.75 9336 8991 93.59
Proposed 9510 9548 9472 9548 | 9435 9540 9321 9550

Table 4: Classification Performance on the Validation and Test Sets for 12-class classification

Model Test Validation

Acc Pr Rec Sp Acc Pr Rec Sp
AlexNet 7750 6141 5850 97.61 | 7795 6540 60.16 97.59
ResNet50 7875 6645 6256 97.68 | 7835 67.32 6094 97.62

SqueezeNet 7670 6246 5741 9746 | 7785 6720 59.16 97.49
ShuffleNetV2 | 79.30 66.43 62.59 97.78 | 80.65 7232 6400 97.82
MobileNetV3 | 82.10 68.11 6792 98.11 | 81.60 71.32 64.93 98.05
EfficientNet 8220 6937 71.05 98.19 | 8255 7235 69.51 98.18

ViT 7470 60.60 5476 97.17 | 75.65 65.26 57.57 97.16
Swin 80.45 6593 63.19 9798 | 81.55 71.61 66.77 98.02
Proposed 82.75 69.52 66.83 98.15 | 8430 74.06 66.67 98.28

Table 5: Comparison of model efficiency metrics, including number of parameters (P), floating-point
operations (FLOPs), model size in megabytes (M), and throughput (T).

Model PM) FLOPs(MMac) M (MB) T (img/s)
AlexNet 57.01 714.97 217.48 18976
ResNet50 23.51 4130.00 89.68 1591
SqueezeNet 0.7 298.14 2.76 9069
ShuffleNet 1.26 151.36 4.81 7232
MobileNetV3 2.54 60.91 9.69 7759
EfficientNet 4.01 408.92 15.30 3281
ViT 85.80 17610 327.30 535
Swin Transformer  27.58 3120 105.21 828
SlantNet 3.36 3.55 12.82 55431

Chapter 6 concludes the dissertation by synthesizing the key innovations developed across four in-
terrelated studies into a unified thermal image analysis framework tailored for PV fault detection. It re-
flects on how the proposed no-reference quality metrics, entropy-based enhancement, quality-guided
augmentation, and the SlantNet architecture collectively address the challenges of low-resolution,
noisy, and imbalanced thermal datasets. These contributions advance both the theoretical founda-
tions and practical implementations of thermal imaging in renewable energy diagnostics. The chapter
also outlines the broader impact of this work, demonstrating its scalability, generalizability, and appli-
cability to edge deployment and multi-modal infrastructure monitoring, while highlighting promising
future directions in autonomous inspection, cross-modal learning, and scalable Al systems for thermal
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Figure 9: Overview of the proposed pipeline integrating quality assessment, contrast enhancement,
data augmentation, and lightweight classification.

diagnostics.

Figure 9 illustrates the end-to-end workflow proposed in this dissertation. The process begins with
an infrared image, which may be processed in two branches: one for quality enhancement and one
for visualization. In the first branch, the raw thermal image undergoes entropy-based enhancement
guided by the Block-wise Image Entropy (BIE) metric to improve contrast and suppress noise. In the
second branch, the thermal image is colored using heatmaps and then converted to grayscale using the
optimal TIA-based decolorization method. Both enhanced and decolorized images feed into a metric-
guided augmentation module that selectively generates high-quality training samples, addressing class
imbalance and improving generalization. These augmented datasets are then used to train the SlantNet
classifier, a lightweight neural network designed for low-resolution thermal input. During inference,
the trained SlantNet model receives either an IR or grayscale image and predicts the corresponding
fault type. This pipeline enables robust, interpretable, and real-time fault classification, suitable for
deployment on embedded systems and UAV platforms.

Main Results of the Research
This dissertation introduces a unified framework for thermal image analysis and classification,
with a particular focus on solar photovoltaic (PV) fault classification. The research is grounded in five
key contributions:
* Proposed two no-reference image quality metrics, TIA and WTIA, which assess perceptual
fidelity in color-to-grayscale conversion. These metrics are robust, monotonic, and threshold-
independent, outperforming classical methods like CCPR and E-score [1].

Developed a novel entropy-based quality metric (BIE) tailored for thermal images. This metric
combines block-wise entropy, standard deviation, and average deviation percentage to guide
contrast enhancement and quantify uncertainty in noisy, low-resolution thermal imagery [2].

Introduced an optimization framework for image processing based on nature-inspired meta-
heuristic algorithms, including the Genetic Algorithm and the Bat Algorithm. These were
demonstrated in the context of optimal decolorization and thermal image enhancement, using
the proposed quality metrics as objective functions.

17



» Proposed a quality-aware augmentation pipeline that selects contrast-enhanced samples based
on BIE and TIA/WTIA scores. This technique generates diagnostically meaningful synthetic
data and significantly boosts classification performance under class imbalance [3].

* Designed SlantNet, a lightweight convolutional neural network architecture that incorporates
novel Slant Convolution (SC) layers. These layers enable efficient directional feature extrac-
tion, achieving state-of-the-art accuracy and throughput for PV fault classification at reduced
computational cost [4].

These contributions constitute a coherent and scalable pipeline for robust, interpretable, and com-
putationally efficient thermal image analysis. The publicly released augmented dataset enhances re-
producibility and supports broader research efforts. The proposed methods are applicable not only
to PV monitoring but also to a wide range of real-time fault detection tasks, including wind turbine
inspection, transformer diagnostics, and industrial visual monitoring. Future directions include inte-
gration into drone-based multimodal inspection systems, exploration of label-efficient training through
self-supervised and federated learning approaches, and the development of an open-source toolkit to
facilitate practical adoption.
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MUSUGLP UGCUUU UL UGN LELE ONSPUPROUSNRU U
YhUONRE3ORLLER®

Unithnthmu

Uplughtt $nunnynpunuyhtt hwdwwngbph quaquowghtt dbpnpdwi htin dblubn waby
E wywniwwm, guonp dwfuuny dnbhunphoigh dhpnndtph wwhwagp' mnnywod dhyndwphiph,
dhwgnuiobph Ynonghuwyh U 9tpdwyhét wjpwotph huwywmowpbpiwop, npnop odugbgond o
Latipghugh wpynibwpbpnudip: Radpuupdhp yuwnlbpabph dywulnut wpynibwybn dhong &
wyn phipmpyniiinh hwywmowptpdwd hwdwp, vwuyt guop Ynbwnpuuwn, thnpp swthubpp b
wnuuyanipynion fpwbqupnd G puuwut hwdwlupgyuyhtt mbunnnipjuwa wgnphputtinha:

Uwubwynpuy by, mbuwbbih vytnph depnniobph ypu hhdogwo gnpohpliipp hwawtu
st mwhu pwujwpup wpymopbbp 9hpduyhtt nyjubbph nbypnd: Pwpnmpymodbp Go
wnwywinud dwl wfjubtph vwhdwtwthwlnmpjug, nwubph wthwjwuwpuwyynnipjui, b
gwon hgnpnipjudp uwppbpnid Jhpwntihmpjuio mbuwalmohg: Uju dwpunwhpudtpibpn
wwhwignd &b 9tipduyhtt wjuwgbphtt hwpiwpbgywd wpymowdtnm, dymd b pwptudnng
[monuakp, npnap Jupnn &b gnpot hpwwa dudwbwlynud:

Ujuunnuiiph tujuunuyp b nhomwpyjwd juighpabkpp

Upluwnwiph owyuwwnwlp pipmpymbdtph aygphn hwymowpbpiwd hwdwp wpymbwybin
Junnnyuupwn vywlybia k, npd owguhdwugywd £ wpliught juhwawlabph unmgiwa b guop
hgnpnipjudp vwppbpnid mbnujuwyiwo hwdwn:

vnhpotpd G&' dwjuowqol] npuwlh yunhhybtp, dywlh wnujunnddbph Gundudp
Quyni, Eowpnyhuyh Jpw hhdoqwo  9tpdwyhd wyuwnbpobph  pupbuygnd,  wnbndby
ufjugtph hwjupwonth wnmqukinwghwyh depnn, dwlh) dbpnbduyghé guagn® wpynibu]tn
nuuwlupgqiwé  hwdwp, U wdpnny onpwd  hwbgpl]  dhwdnpuwo  hwdwupgnod
thnpawnlny puqiwpinyp gtpduyght uijwakph gpu:

Uwnwugywd wpnjmapatph jhpunuwjua dpubtalympymap

Upluwnwipnid dtpfuyugduwd gnpohpbtinp wwwhnynud G wwwnltpobph wpymbwybin
ghwhwunnd U puuwluagnd®  hpuud  dudwiwynd,  hwpdwpbguo  npnbabiph,
dtipunmgywd uwppliph U bgpuyhé hwdwuwpgtph Ypw Yhpuniwd hwdwp: Cnpwb® dpunyug
wnwig hndwd npuwlh swthhyobpp, hwpdwpynn pwupbjugnudp b SlantNet dnnbip, ddugqbgond £
nuuwupgiwd dudwiwyp' pupdpugibing wptiughd Juhwawhabph wpymbawybompymap:
Utpnnbtpp wb Yhpwnbtth G wbuwhuliwbd, wpymbwpbpuui b widuwbgnipjub
untthunnphoigh ninpundbpnud: fwgh wyn, wyubdtph poguwyoduwo hwjwpwonit hwbpuyugy by
L GitHub hwppwlmd* hipunwgatiim ghnwljué Yepupnunptihnipynip b fupwigtine htinwgu
htinmwgnunmpynibibiinp:

Uluwmmuwiaph dSwjuwyp b junmgyjwopp
Upfuwnwiaipp pangpymd £ 126 k9* dtipunyw dbpudmpymb, ynpu giniju b igpujugnipynid:
Uyt qupmbowynud £ 134 gpujuanipyud winpjnip:
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Uzluwmwiph hhhowljua wipny ymapatpp

e Unwywnlyly G ny-hniwd TIA U WTIA npuyh  swthhydbp'  wuwwnlbpbtiph
gnibwpwing  popugpnii Junmgjwopuyht U gmbugh  wbnhjunynipjui
wwhwwinuip gowhwwnbint hwdwp: Quithhsobpp dnbnnnd &b, Juymb b wiwfu
Gl gmbuwghtt wwppbpmpjud  wwpwidtnphg  ghpuquagbing  gnmipyma  matgnn
ubpnnbbpn [1]:

o Upuwlyly £ 9tpiuyhtt qqunytpatiph hwdwp hwpdwpbgquo anp Lawnpnuyhwyny npuh
suthhy' BIE: Ujh hwdwnpnud £ pinuyhdt Ednpnuhwd, vnwinupn pinnuip b
uhghdt obiniwd wnynup' pny; wuyny Yndwnpwunh oywnhdwjugnud b winpnynipjub
pwiwluuiwgnud wnudlnun nt guop-pupdpnipjud 9hpduyht wuwnlbpabpna [2]:

o Lhpjuyugdty L wwulbph dywliwd owwhiwjugiwd hwdwlyupg'  hhdaguo

pnipynithg  GtpptipJwd  dbwnwbyphunhy uygnphpddbph ypw  (op.' glbtwhly U

onohlatph wygnphpddtin), npnbtn npwbu Gwyuunwluht $niaghw oquuugnpdynid

b wnwywpyquo npwyh swthhsbbipp' gnibwpwthdwd U 9kpdughdt pupbjufdwb

futnhpbbph hwdwp:

Unwywplpyty £ npwluyhdt sunhhybbpn] nbujupdnn  panpuyadwd dbpng,  npp

phunpnd £ Yndwpwunny  hwpunwugquo  ddnpdtpp' wywhnybing - wpdbpuynp

ujugph unbtndnd b qquihnpbl pupdp puuwlupgiwi dgpunipyid puubph

wihwjwuwpwlpnnipjub yuwydwbbbpnd [3]:

e Upwlyty E SlantNet® ptpl oypnbughd  gwiguyht  dwpunwpuwybnnpnd,
npp  Gtpwnmd £ Gnpupwpulud plp  Ynbdnpmghwbtp  (Slant  Convolution)*

nnoppuwd wnwadbwhwnnipymbdbph  wpymowdtin - Jepmompyuio  hudwp:
Swpunuwpuwybnmpymp  hwuind £ wowywunwp - dygpunipjud b wipugnipyud’
tJuqugnyt hwpgupluyhtt puppnipyud wuwydwabbpnud [4]:
Lhpnpnuigtpp Jugqund G& wdpnnoujut hwdwwpg, npé wpnymbwytnnpta b Junwhtbh
Yepwny hpwlwbwgand £ gtiptuyhd wunybpatph epmompymé’ dudwiwyh wyuwhwgbbpha
hwiwwywwnwujuwb:
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ONTUMMBAINA METOJOB OBPABOTKH N30BPAKEHIAN U X
INPUMEHEHNA

3akiaouenne

MaciurabHoe BHefipeHHe COHeuHbIX (poToanekTpudeckux (P) crcTeM YCUIHIO MOTPeOHOCTh
B aBTOMAaTHMYECKHX M HEJOPOTMX METONAX WHCIEKIWH JUif BBIABIEHUS AE(EKTOB, TaKUX Kak
MMKPOTPEILMHBI, KOPPO3USl COSAMHEHUH W TepMHYECKHMe aHOMAIMH, CHUKAIOLIME BbIPAOOTKY
sHeprun. MHdpakpacHass Tepmorpacus MO3BOJNSET BBHISABIATH TAKUE HEUCIIPABHOCTH, OJHAKO
e€ MpUMEeHeHHe OCJIOXHSETCA HU3KMM KOHTPAcTOM, OTPaHMYEHHBIM Pa3pEIleHHEM M BBICOKOW
JyBCTBUTEJILHOCTBIO K IIyMY.

CrangaptHeie MeTobl 00paGOTKM M300paXeHUid, pa3padoTaHHble AJIsI BHAUMOTO CIIEKTPa,
IUIOXO CIPABJIAIOTCS C aHAIM30M TEIUIOBU3MOHHBIX JaHHbIX. Kpome Toro, Habmogaercsi HeXBaTKa
pa3MEYEeHHBIX TEIUIOBU3MOHHBIX JAHHBIX, CHIbHAs JUCOQIAHCHMPOBKA KJACCOB M CIOXHOCThb
MPUMEHEHHS CYIECTBYOLINX MOJEIEH B YCIOBUAX OTPAHIMYEHHBIX BBIYMCIUTEILHBIX PECYPCOB. ITH
OrpaHHYeHus TPeOyIOT CO3JaHUs CHELMATN3UPOBAHHBIX MOJXOJ0B K 00paboTKe MH(PaKpPaCHBIX
U300paKEeHUH, alaTHPOBAHHBIX JUIs1 OECITMIOTHUKOB U BCTPOSHHbBIX CHCTEM.

OcHoBHas 1HeJb padoThI U 33124

Lenbio ABISETCS CO3JAHME JIEPKOBECHOTO W 3aBEPIIEHHOTO KOHBEWepa Juis TOYHOIO
OOHApYKEHUS TEIIOBBIX JE(PEKTOB, ONTUMU3UPOBAHHOTO JUIsl OOCIIEJOBAHUS COTHEUHBIX MTAHENEN
Y TIPUTOJTHOTO JUIS PA3MEIIIEHUS Ha MaJIOMOIIHBIX YCTPOMCTBAX.

KioueBble 3a7auu BKJIOYAIOT:  pa3spabOTKy OE33TaJOHHBIX METPUK KAuecTBa; CO3JaHUe
METO/a KOHTPACTHOIO YJIYYLIEHHs] HA OCHOBE SHTPOIMH; TE€HEPALMI0 CHHTETUYECKHMX IAHHBIX
IS OATAHCMPOBKY PEKMX KJIACCOB; MPOEKTUPOBAHNE 3(PMEKTUBHOM MOJIE/N; UHTErPALMIO BCEX
KOMIIOHEHTOB B €/IMHBIA OTKPHITHIA MPOrPAMMHBIA KOMIUIEKC, TPOTECTUPOBAHHBIA HA PA3IMYHBIX
TEIUIOBU3MOHHBIX HA00paX JaHHBIX.

IIpakTHYeckass 3HAYMMOCTD N0Jy4YeHHBIX Pe3yJbTaToOB

IMpenyioxkeHHsle B paboTe MHCTPYMEHTHl oOecreunBaioT 3(P(EKTUBHYI0O M JOCTYIHYIO
TEIJIOBU3UOHHYI0 HMHCIIEKLMIO B pPEaJbHOM BPEMEHH, AaJalTUPOBAHHYIO Ul MCIOJb30BaHUSA
Ha JIPOHAX, BCTPOCHHBIX YCTPOWMCTBAX W IMOTPaHMYHBIX cucTeMax. VIHrterpaims Oe33TaJOHHBIX
METPUK KayecTBa, AJANTHBHOIO YJIydlleHUs U JErkod mopenu SlantNet Mo3BOJI€T COKpPaTUTh
BpeMsi MPOBEPKU M IPOCTOM 00OpYyIOBaHMs, MOBbIMIAs 3(PHEKTUBHOCTh (HOTOIIEKTPUIECKUX
naHeneidl. Pa3paGoTaHHBIE METOABI TAaKXe NMPUMEHUMBI B BHICOHAOIOAECHUH, MPOMBIIUICHHON
JUarHOCTUKE M CHCTeMax Oe3omacHOCTH. Kpome Toro, paciiMpeHHBbI Ha0Op CHHTETHYECKHX
JaHHBIX pa3Meli€H B OTKpuiToM joctyne Ha GitHub mis obecrnieveHus: BOCIPOM3BOIMMOCTH M
HOJIEPXKKH HOBBIX UCCIIEJIOBAHUI.

O0bEM U cTPYKTYpa padoThl
Huccepranus copepkuT 126 cTpaHuI] M BKJIOYAET BBEJCHNE, YeThIpe IJIaBbl U 3aKoueHre. B
padote npuBesaeHs! 134 6ubmrorpaduueckux UCTOYHHUKA.
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OcHOBHEBIE pe3yJIbTaThl PadoThI

Pa3paboTka aByX Oe33TaOHHBIX MeTpuK KadectBa m3oOpaxenmii — TIA un WTIA,
IIpeIHa3HAYEHHBIX Ul OLIEHKU COXPAHEHUS XPOMATUUECKUX U CTPYKTYPHBIX IIPUZHAKOB IIPU
NpeoOpa3oBaHUM LBETHBIX M300pakeHWIl B OTTEHKM CEeporo. MEeTpUKH IeMOHCTPUPYIOT
YCTOIUMBOCTb K IIOPOraM, MOHOTOHHOCTb U IIPEBOCXOJAT KJIaCCUYeCKUe Ioaxoasl [1].
IIpemyoxxena HOBasl SHTPONMIHAs MeTpPUKA Ul TEIUIOBU3HOHHBIX W300pakeHHd —
BIE, yuuthBaiomasi OJIOYHYIO SHTPONUIO, CTAHAAPTHOE OTKJIOHEHWE W IIOKa3aTeslb
cpenHeil nepuanuy. OHa IpefHa3HAYeHa JUIS OLEHKM KayecTBa, YCHIEHHUS KOHTpacTa U
KOJINYECTBEHHOH OLIEHKU HEOIPEe/Ie/IEHHOCTH B YCJIOBUAX LIIyMa M HU3KOro paspenieHus [2].
Pa3zpaGoraHa cxema ONTHMM3AIMM METOJOB 0OpaOOTKM M300paXeHWH Ha OCHOBE
METa3BPUCTUYECKUX AJITOPUTMOB, TAKMX Kak reHetuueckuil anroputM (GA) u anroputm
seryyux Mmbimeil (BA). IlpeioxkeHHsle METPUKU HCIOJB3YIOTCS B KadyecTBE LEJIEBHIX
(pyHKIWMI 17151 33124 IEKOJIOPU3ALIMH 1 YITyYIIeHHs] Ka9eCTBa TEITIOBU3HOHHBIX N300 paskeHUH.
IIpencraBieH MeToA reHepaluy CUHTETUYECKHX JaHHBIX, OCHOBAHHBIN Ha OLICHKE KauyecTBa
n3obpaxennii. OH TO3BOJIsIET OTOMPaTh KOHTPACTHO-YCWJIEHHBIE M AWArHOCTHYECKH
3HAYMMBble 0Opa3Ibl, YTO 3HAUUTEHFHO YIy4lIaeT TOYHOCTh KJIACCU(HUKAIMK NP HAJIUINH
aucOananca KiaccoB. Takske oImyOIMKOBaH paclIMpeHHbIN TepMaJIbHBIN qaTtaceT [3].
Pa3paborana HelipocereBast apxutektypa SlantNet — nérkas u 3¢deKkTuBHass MoJesb
Ha OCHOBEe HaKJIOHHBIX cBEpTOK (Slant Convolution), oOecrieunBaoIIasi HAIpaBIEeHHOE
U3BJI€YEHNE IIPU3HAKOB, BBICOKYI0 TOYHOCTh U IPOU3BOAUTEIBHOCTh IIPM MHUHMMAJIBHBIX
BBIUMCIIUTEINIBHBIX 3aTparax [4].

U pe3yibTaThl (POPMUPYIOT MACIITAOUPYEMYI0 U MHTEPIPETHPYEMYIO CUCTEMY ISl aHaIM3a

TEIIOBU3UOHHBIX I/I306pa)KCHI/I171 B p€aJIbHOM BPEMEHU.

22



